Enteropathy-associated T cell lymphoma is a severe complication of celiac disease (CD). One mechanism suggested to underlie its development is chronic exposure of intraepithelial lymphocytes (IELs) to potent antiapoptotic signals initiated by IL-15, a cytokine overexpressed in the enterocytes of individuals with CD. However, the signaling pathway by which IL-15 transmits these antiapoptotic signals has not been firmly established. Here we show that the survival signals delivered by IL-15 to freshly isolated human IELs and to human IEL cell lines derived from CD patients with type II refractory CD (RCDII) — a clinicopathological entity considered an intermediary step between CD and enteropathy-associated T cell lymphoma — depend on the antiapoptotic factors Bcl-2 and/or Bcl-xL. The signals also required IL-15Rβ, Jak3, and STAT5, but were independent of PI3K, ERK, and STAT3. Consistent with these data, IELs from patients with active CD and RCDII contained increased amounts of Bcl-xL, phospho-Jak3, and phospho-STAT5. Furthermore, incubation of patient duodenal biopsies with a fully humanized human IL-15–specific Ab effectively blocked Jak3 and STAT5 phosphorylation. In addition, treatment with this Ab induced IEL apoptosis and wiped out the massive IEL accumulation in mice overexpressing human IL-15 in their gut epithelium. Together, our results delineate the IL-15–driven survival pathway in human IELs and demonstrate that IL-15 and its downstream effectors are meaningful therapeutic targets in RCDII.
Georgia Malamut, Raja El Machhour, Nicolas Montcuquet, Séverine Martin-Lannerée, Isabelle Dusanter-Fourt, Virginie Verkarre, Jean-Jacques Mention, Gabriel Rahmi, Hiroshi Kiyono, Eric A. Butz, Nicole Brousse, Christophe Cellier, Nadine Cerf-Bensussan, Bertrand Meresse