Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish
Bin Ren, … , Randall T. Peterson, Michael Simons
Bin Ren, … , Randall T. Peterson, Michael Simons
Published March 8, 2010
Citation Information: J Clin Invest. 2010;120(4):1217-1228. https://doi.org/10.1172/JCI39837.
View: Text | PDF
Research Article Vascular biology

ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish

  • Text
  • PDF
Abstract

Arterial morphogenesis is an important and poorly understood process. In particular, the signaling events controlling arterial formation have not been established. We evaluated whether alterations in the balance between ERK1/2 and PI3K signaling pathways could stimulate arterial formation in the setting of defective arterial morphogenesis in mice and zebrafish. Increased ERK1/2 activity in mouse ECs with reduced VEGF responsiveness was achieved in vitro and in vivo by downregulating PI3K activity, suppressing Akt1 but not Akt2 expression, or introducing a constitutively active ERK1/2 construct. Such restoration of ERK1/2 activation was sufficient to restore impaired arterial development and branching morphogenesis in synectin-deficient mice and synectin-knockdown zebrafish. The same approach effectively stimulated arterial growth in adult mice, restoring arteriogenesis in mice lacking synectin and in atherosclerotic mice lacking both LDL-R and ApoB48. We therefore conclude that PI3K-ERK1/2 crosstalk plays a key role in the regulation of arterial growth and that the augmentation of ERK signaling via suppression of the PI3K signaling pathway can effectively stimulate arteriogenesis.

Authors

Bin Ren, Yong Deng, Arpita Mukhopadhyay, Anthony A. Lanahan, Zhen W. Zhuang, Karen L. Moodie, Mary Jo Mulligan-Kehoe, Tatiana V. Byzova, Randall T. Peterson, Michael Simons

×

Figure 4

ERK activation restores functional defects in synectin-deficient AECs.

Options: View larger image (or click on image) Download as PowerPoint
ERK activation restores functional defects in synectin-deficient AECs.
(...
(A and B) Synectin-deficient AECs were transduced with empty Ad vector, Ad-ME, or Ad-ME-LA. The transduced cells were then plated in growth factor–depleted Matrigel and exposed to 25 ng/ml VEGF-A165 as indicated. The extent of cord branching, assessed 24 hours later as described in Figure 3, is expressed as fold change relative to untreated control synectin-deficient AECs. Note restoration of branching in synectin-deficient AECs expressing ME-LA construct. Scale bars: 500 μm. (C) Cell migration in modified Boyden chamber. Synectin-deficient or WT AECs, treated as above, were placed in the chamber, and the extent of migration in response to VEGF was assessed. Values are expressed as fold change relative to that of vehicle-treated synectin-deficient AECs. Note restoration of migration by the ME-LA construct. *P < 0.05 vs. vector control.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts