Gain-of-function mutations in FGF receptor 3 (FGFR3) have been implicated in severe skeletal dysplasias and in a variety of cancers. In their study in this issue of the JCI, Qing et al. used specific shRNA probes to demonstrate that FGFR3 functions as an important driver of bladder carcinoma cell proliferation (see the related article beginning on page 1216). A unique anti-FGFR3 mAb was shown to exhibit antitumor activity in human bladder carcinoma cells in vitro and in mouse bladder cancer or multiple myeloma xenograft tumor models bearing either wild-type or mutant FGFR3. These results suggest that clinical development of anti-FGFR3 mAbs should be considered for targeted therapy of cancer and other diseases.
Yaron Hadari, Joseph Schlessinger
Potential mechanism of inhibition of the activity of disulfide-linked oncogenic FGFR3 mutants by treatment with an anti-FGFR3 mAb (R3Mab).