Elevated plasma concentrations of HDL cholesterol (HDL-C) are associated with protection from atherosclerotic cardiovascular disease. Animal models indicate that decreased expression of endothelial lipase (LIPG) is inversely associated with HDL-C levels, and genome-wide association studies have identified LIPG variants as being associated with HDL-C levels in humans. We hypothesized that loss-of-function mutations in LIPG may result in elevated HDL-C and therefore performed deep resequencing of LIPG exons in cases with elevated HDL-C levels and controls with decreased HDL-C levels. We identified a significant excess of nonsynonymous LIPG variants unique to cases with elevated HDL-C. In vitro lipase activity assays demonstrated that these variants significantly decreased endothelial lipase activity. In addition, a meta-analysis across 5 cohorts demonstrated that the low-frequency Asn396Ser variant is significantly associated with increased HDL-C, while the common Thr111Ile variant is not. Functional analysis confirmed that the Asn396Ser variant has significantly decreased lipase activity both in vitro and in vivo, while the Thr111Ile variant has normal lipase activity. Our results establish that loss-of-function mutations in LIPG lead to increased HDL-C levels and support the idea that inhibition of endothelial lipase may be an effective mechanism to raise HDL-C.
Andrew C. Edmondson, Robert J. Brown, Sekar Kathiresan, L. Adrienne Cupples, Serkalem Demissie, Alisa Knodle Manning, Majken K. Jensen, Eric B. Rimm, Jian Wang, Amrith Rodrigues, Vaneeta Bamba, Sumeet A. Khetarpal, Megan L. Wolfe, Stephanie DerOhannessian, Mingyao Li, Muredach P. Reilly, Jens Aberle, David Evans, Robert A. Hegele, Daniel J. Rader
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 517 | 66 |
79 | 34 | |
Figure | 81 | 3 |
Table | 195 | 0 |
Supplemental data | 30 | 2 |
Citation downloads | 50 | 0 |
Totals | 952 | 105 |
Total Views | 1,057 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.