Since the natural immune response to hepatitis C virus (HCV) is often unable to clear the infection, to enhance immunogenicity we studied substituted peptides from an HCV cytotoxic T lymphocyte (CTL) epitope (C7A2) from a conserved region of the HCV core protein (DLMGYIPLV) recognized by CTL lines from HLA-A2.1(+) HCV-infected patients and HLA-A2.1 transgenic mice. HLA-A2.1 binding, human and murine CTL recognition, and in vivo immunogenicity (using mice transgenic for human HLA-A2 in lieu of immunizing humans) were analyzed to define peptides with enhanced immunogenicity. Peptides substituted at position 1 showed enhanced HLA-A2 binding affinity, but paradoxically poorer immunogenicity. A peptide with Ala substituted at position 8 (8A) showed higher HLA-A2 binding affinity and CTL recognition and was a more potent in vivo immunogen in HLA-A2-transgenic mice, inducing higher CTL responses with higher avidity against native C7A2 than induced by C7A2 itself. These results suggest that peptide 8A is a more potent in vitro antigen and in vivo immunogen than C7A2 and may be useful as a vaccine component. They provide proof of principle that the strategy of epitope enhancement can enhance immunogenicity of a CTL epitope recognized by human CTL.
P Sarobe, C D Pendleton, T Akatsuka, D Lau, V H Engelhard, S M Feinstone, J A Berzofsky
Title and authors | Publication | Year |
---|---|---|
TARP vaccination is associated with slowing in PSA velocity and decreasing tumor growth rates in patients with Stage D0 prostate cancer
LV Wood, A Fojo, BD Roberson, MS Hughes, W Dahut, JL Gulley, RA Madan, PM Arlen, M Sabatino, DF Stroncek, L Castiello, JB Trepel, MJ Lee, HL Parnes, SM Steinberg, M Terabe, J Wilkerson, I Pastan, JA Berzofsky |
OncoImmunology | 2016 |
Cancer Drug Discovery and Development
U Bharadwaj, MM Kasembeli, DJ Tweardy |
Cancer Drug Discovery and Development | 2016 |