Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice
Tae-Il Jeon, … , Jarrod L. Larson, Timothy F. Osborne
Tae-Il Jeon, … , Jarrod L. Larson, Timothy F. Osborne
Published October 9, 2008
Citation Information: J Clin Invest. 2008;118(11):3693-3700. https://doi.org/10.1172/JCI36461.
View: Text | PDF
Research Article Genetics Article has an altmetric score of 3

SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice

  • Text
  • PDF
Abstract

Bitter taste–sensing G protein–coupled receptors (type 2 taste receptors [T2Rs]) are expressed in taste receptor cells of the tongue, where they play an important role in limiting ingestion of bitter-tasting, potentially toxic compounds. T2Rs are also expressed in gut-derived enteroendocrine cells, where they have also been hypothesized to play a role in limiting toxin absorption. In this study, we have shown that T2R gene expression in both cultured mouse enteroendocrine cells and mouse intestine is regulated by the cholesterol-sensitive SREBP-2. In addition, T2R stimulation of cholecystokinin (CCK) secretion was enhanced directly by SREBP-2 in cultured cells and in mice fed chow supplemented with lovastatin and ezetimibe (L/E) to decrease dietary sterol absorption and increase nuclear activity of SREBP-2. Low-cholesterol diets are naturally composed of high amounts of plant matter that is likely to contain dietary toxins, and CCK is known to improve dietary absorption of fats, slow gastric emptying, and decrease food intake. Thus, these studies suggest that SREBP-2 activation of bitter signaling receptors in the intestine may sensitize the gut to a low-fat diet and to potential accompanying food-borne toxins that make it past the initial aversive response in the mouth.

Authors

Tae-Il Jeon, Bing Zhu, Jarrod L. Larson, Timothy F. Osborne

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 1,051 95
PDF 88 33
Figure 335 5
Table 70 0
Supplemental data 52 4
Citation downloads 79 0
Totals 1,675 137
Total Views 1,812
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 11 patents
97 readers on Mendeley
See more details