Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin
David Sancho, … , James R. Carlyle, Caetano Reis e Sousa
David Sancho, … , James R. Carlyle, Caetano Reis e Sousa
Published May 22, 2008
Citation Information: J Clin Invest. 2008;118(6):2098-2110. https://doi.org/10.1172/JCI34584.
View: Text | PDF
Research Article Immunology

Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin

  • Text
  • PDF
Abstract

The mouse CD8α+ DC subset excels at cross-presentation of antigen, which can elicit robust CTL responses. A receptor allowing specific antigen targeting to this subset and its equivalent in humans would therefore be useful for the induction of antitumor CTLs. Here, we have characterized a C-type lectin of the NK cell receptor group that we named DC, NK lectin group receptor-1 (DNGR-1). DNGR-1 was found to be expressed in mice at high levels by CD8+ DCs and at low levels by plasmacytoid DCs but not by other hematopoietic cells. Human DNGR-1 was also restricted in expression to a small subset of blood DCs that bear similarities to mouse CD8α+ DCs. The selective expression pattern and observed endocytic activity of DNGR-1 suggested that it could be used for antigen targeting to DCs. Consistent with this notion, antigen epitopes covalently coupled to an antibody specific for mouse DNGR-1 were selectively cross-presented by CD8α+ DCs in vivo and, when given with adjuvants, induced potent CTL responses. When the antigens corresponded to tumor-expressed peptides, treatment with the antibody conjugate and adjuvant could prevent development or mediate eradication of B16 melanoma lung pseudometastases. We conclude that DNGR-1 is a novel, highly specific marker of mouse and human DC subsets that can be exploited for CTL cross-priming and tumor therapy.

Authors

David Sancho, Diego Mourão-Sá, Olivier P. Joffre, Oliver Schulz, Neil C. Rogers, Daniel J. Pennington, James R. Carlyle, Caetano Reis e Sousa

×

Figure 6

CTL priming with antigen targeting to DNGR-1 plus anti-CD40.

Options: View larger image (or click on image) Download as PowerPoint
CTL priming with antigen targeting to DNGR-1 plus anti-CD40.
2 μg S1-con...
2 μg S1-conjugated anti–DNGR-1 (7H11) or rat IgG1 isotype-matched control mAbs were injected s.c. with or without anti-CD40 (25 μg) as indicated. Target cells were injected 5 days later, and mice were analyzed on day 6. (A) In vivo CTL activity as measured by target cell elimination. Histograms show target cell frequency in representative mice from each group (CFSElo, 20 nM peptide; CFSEint, 200 nM peptide; CFSEhi, no peptide). Graph shows mean ± SEM of percentage of specific lysis in 1 experiment of 3 (n = 6 mice/group). All groups are shown, but the only one in which killing was detectable was that receiving anti–DNGR-1–S1 plus anti-CD40. (B) H-2Kb–SIINFEKL tetramer staining of splenocytes. Left panel shows representative dot plots of tetramer staining versus CD8 in gated CD8+ Thy1+ T cells. Right panel shows frequency of tetramer-positive CD8+ T cells in 1 experiment of 3 (n = 6 mice/group). (C) In vitro restimulation with 1 μM SIINFEKL (PEPTIDE) or medium alone (CTR). Left panel IFN-γ content in supernatants at the end of the 5-day culture. Right panel shows specific CTL activity of in vitro–restimulated cells against EL4 targets loaded with 2 μM of SIINFEKL. Data are the average + SEM of all cultures (n = 6 mice/group, restimulated individually). P values were calculated using Student’s t test. (D) OVA protein conjugated to anti–DNGR-1 induces CTL priming in vivo. Mice were immunized s.c. in the paw with 2 μg anti–DNGR-1 or isotype control antibodies conjugated to OVA protein in the presence of 25 μg of anti-CD40. In vivo killing activity was analyzed as in A using targets loaded with 200 nM SIINFEKL peptide. Results represent individual mice and the mean for 1 representative experiment out of 3. n = 5; P < 0.01, t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts