Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells
Takaharu Ichimura, … , Jeremy S. Duffield, Joseph V. Bonventre
Takaharu Ichimura, … , Jeremy S. Duffield, Joseph V. Bonventre
Published April 15, 2008
Citation Information: J Clin Invest. 2008;118(5):1657-1668. https://doi.org/10.1172/JCI34487.
View: Text | PDF
Research Article Nephrology Article has an altmetric score of 5

Kidney injury molecule–1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells

  • Text
  • PDF
Abstract

Following injury, the clearance of apoptotic and necrotic cells is necessary for mitigation and resolution of inflammation and tissue repair. In addition to macrophages, which are traditionally assigned to this task, neighboring epithelial cells in the affected tissue are postulated to contribute to this process. Kidney injury molecule–1 (KIM-1 or TIM-1) is an immunoglobulin superfamily cell-surface protein not expressed by cells of the myeloid lineage but highly upregulated on the surface of injured kidney epithelial cells. Here we demonstrate that injured kidney epithelial cells assumed attributes of endogenous phagocytes. Confocal images confirm internalization of apoptotic bodies within KIM-1–expressing epithelial cells after injury in rat kidney tubules in vivo. KIM-1 was directly responsible for phagocytosis in cultured primary rat tubule epithelial cells and also porcine and canine epithelial cell lines. KIM-1 was able to specifically recognize apoptotic cell surface-specific epitopes phosphatidylserine, and oxidized lipoproteins, expressed by apoptotic tubular epithelial cells. Thus, KIM-1 is the first nonmyeloid phosphatidylserine receptor identified to our knowledge that transforms epithelial cells into semiprofessional phagocytes.

Authors

Takaharu Ichimura, Edwin J.P.v. Asseldonk, Benjamin D. Humphreys, Lakshman Gunaratnam, Jeremy S. Duffield, Joseph V. Bonventre

×

Figure 3

KIM-1–expressing kidney epithelial cell lines avidly bind and phagocytose apoptotic and necrotic material.

Options: View larger image (or click on image) Download as PowerPoint
KIM-1–expressing kidney epithelial cell lines avidly bind and phagocytos...
(A) KIM-1 (red) in a KIM1-PK1 cell (left panel) is expressed at high levels (arrows) at the point of binding of multiple apoptotic thymocytes (green and blue) and is part of the initial phagocytic cup (arrowhead). Scale bar: 5 μm. At later time points (right panel), KIM-1 remains associated with the internalized apoptotic cell, resulting in ring enhancement (arrow) of the apoptotic body. The cell border is highlighted by broken lines. Scale bar: 10 μm. (B) Multiple apoptotic thymocytes labeled with CMFDA (green) were localized intracellularly in KIM-1–expressing cells after coculture. Internalized apoptotic thymocytes are visualized in the confocal plane of cortical actin filaments (red) in this confocal image confirming internalization. Cell nuclei (N) are highlighted. Scale bar: 10 μm. (C) DIC with fluorescence (green) microscopic images of KIM1-PK1 cells confirm ingestion of CMFDA-labeled (green) apoptotic LLC-PK1 cells (left panel) or sonicated LLC-PK1 cell debris (middle panel). pCDNA-PK1 cells in the same experiment showing no phagocytosis of apoptotic cells (right panel). These microscopic studies confirm internalization of fluorescent apoptotic or necrotic cell debris (arrowheads). Original magnification, ×60.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 3 patents
Highlighted by 1 platforms
400 readers on Mendeley
1 readers on CiteULike
See more details