Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model
Maged M. Harraz, … , Christian Schöneich, John F. Engelhardt
Maged M. Harraz, … , Christian Schöneich, John F. Engelhardt
Published January 24, 2008
Citation Information: J Clin Invest. 2008;118(2):659-670. https://doi.org/10.1172/JCI34060.
View: Text | PDF
Research Article Article has an altmetric score of 8

SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model

  • Text
  • PDF
Abstract

Neurodegeneration in familial amyotrophic lateral sclerosis (ALS) is associated with enhanced redox stress caused by dominant mutations in superoxide dismutase–1 (SOD1). SOD1 is a cytosolic enzyme that facilitates the conversion of superoxide (O2•–) to H2O2. Here we demonstrate that SOD1 is not just a catabolic enzyme, but can also directly regulate NADPH oxidase–dependent (Nox-dependent) O2•– production by binding Rac1 and inhibiting its GTPase activity. Oxidation of Rac1 by H2O2 uncoupled SOD1 binding in a reversible fashion, producing a self-regulating redox sensor for Nox-derived O2•– production. This process of redox-sensitive uncoupling of SOD1 from Rac1 was defective in SOD1 ALS mutants, leading to enhanced Rac1/Nox activation in transgenic mouse tissues and cell lines expressing ALS SOD1 mutants. Glial cell toxicity associated with expression of SOD1 mutants in culture was significantly attenuated by treatment with the Nox inhibitor apocynin. Treatment of ALS mice with apocynin also significantly increased their average life span. This redox sensor mechanism may explain the gain-of-function seen with certain SOD1 mutations associated with ALS and defines new therapeutic targets.

Authors

Maged M. Harraz, Jennifer J. Marden, Weihong Zhou, Yulong Zhang, Aislinn Williams, Victor S. Sharov, Kathryn Nelson, Meihui Luo, Henry Paulson, Christian Schöneich, John F. Engelhardt

×

Figure 5

Redox-sensor model for SOD1-mediated regulation of Nox2 ROS production through Rac.

Options: View larger image (or click on image) Download as PowerPoint
Redox-sensor model for SOD1-mediated regulation of Nox2 ROS production t...
Under reducing conditions SOD1 is bound to Rac-GTP and stabilizes Rac activation by inhibiting intrinsic and GAP-mediated GTP hydrolysis. Increased Rac-GTP levels lead to activation of Nox2 and production of O2•–. O2•– generated by the Nox2 complex is converted to H2O2 by SOD1 or through spontaneous dismutation. As the local concentration of H2O2 rises, oxidation of Rac leads to the dissociation of SOD1. With SOD1 no longer bound to Rac-GTP, hydrolysis to Rac-GDP occurs more quickly, leading to inactivation of the Nox2 complex. SOD1 can then recycle to repeat the process as Rac/Nox2 is reactivated. Through this mechanism, we propose that SOD1 can sense the local concentration of ROS at sites of Rac/Nox2 complex activation and control the activity of the complex. In certain ALS mutants of SOD1, redox-dependent dissociation of SOD1 from Rac1 is impaired, leading to sustained activation of Rac1-GTP and higher levels of Nox2 activation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 2 patents
Referenced in 2 Wikipedia pages
Highlighted by 1 platforms
255 readers on Mendeley
See more details