Long-term neurological deficiencies resulting from hippocampal cytotoxicity induced by cranial irradiation (IR) present a challenge in the treatment of primary and metastatic brain cancers, especially in children. Previously, we showed that lithium protected hippocampal neurons from IR-induced apoptosis and improved neurocognitive function in treated mice. Here, we demonstrate accelerated repair of IR-induced chromosomal double-strand breaks (DSBs) in lithium-treated neurons. Lithium treatment not only increased IR-induced DNA-dependent protein kinase (DNA-PK) threonine 2609 foci, a surrogate marker for activated nonhomologous end-joining (NHEJ) repair, but also enhanced double-strand DNA end-rejoining activity in hippocampal neurons. The increased NHEJ repair coincided with reduced numbers of IR-induced γ-H2AX foci, well-characterized in situ markers of DSBs. These findings were confirmed in vivo in irradiated mice. Consistent with a role of NHEJ repair in lithium-mediated neuroprotection, attenuation of IR-induced apoptosis of hippocampal neurons by lithium was dramatically abrogated when DNA-PK function was abolished genetically in SCID mice or inhibited biochemically by the DNA-PK inhibitor IC86621. Importantly, none of these findings were evident in glioma cancer cells. These results support our hypothesis that lithium protects hippocampal neurons by promoting the NHEJ repair–mediated DNA repair pathway and warrant future investigation of lithium-mediated neuroprotection during cranial IR, especially in the pediatric population.
Eddy S. Yang, Hong Wang, Guochun Jiang, Somaira Nowsheen, Allie Fu, Dennis E. Hallahan, Fen Xia
Lithium-mediated effects are not apparent in glioma tumor cells.