Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Kinetoplastids: related protozoan pathogens, different diseases
Ken Stuart, … , Steve Reed, Rick Tarleton
Ken Stuart, … , Steve Reed, Rick Tarleton
Published April 1, 2008
Citation Information: J Clin Invest. 2008;118(4):1301-1310. https://doi.org/10.1172/JCI33945.
View: Text | PDF
Review Series Article has an altmetric score of 19

Kinetoplastids: related protozoan pathogens, different diseases

  • Text
  • PDF
Abstract

Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these “neglected diseases” are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better.

Authors

Ken Stuart, Reto Brun, Simon Croft, Alan Fairlamb, Ricardo E. Gürtler, Jim McKerrow, Steve Reed, Rick Tarleton

×

Figure 2

Life cycle of T. cruzi.

Options: View larger image (or click on image) Download as PowerPoint
Life cycle of T. cruzi.

Persistent infection with T. cruzi causes Chaga...
Persistent infection with T. cruzi causes Chagas disease. The parasite is transmitted to humans by infected blood-sucking Triatominae insects, which deposit trypomastigotes in their feces during feeding. The trypomastigotes enter the wound and invade nearby cells, within which they differentiate into intracellular amastigotes that multiply by binary fission. The amastigotes differentiate into trypomastigotes, which are released into the bloodstream and infect cells of multiple organs and tissues, including the heart, gut, CNS, smooth muscle, and adipose tissue and once again become amastigotes. The Triatominae insects become infected when they take a parasite-containing blood meal from an infected human or animal. The trypomastigotes undergo morphological and physiological transformations in the midgut of the vector and differentiate into infective trypomastigotes in the hindgut. Image modified with permission from Alexander J. da Silva and Melanie Moser, Centers for Disease Control Public Health Image Library.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Referenced in 2 policy sources
Referenced in 1 patents
Referenced in 1 Wikipedia pages
Mentioned in 1 Google+ posts
690 readers on Mendeley
See more details