Current anticancer therapy is a delicate balance between elimination of malignant cells and harmful side effects for the host. In this study, we used a tumor-homing peptide to engineer anti-CD40 agonist antibodies and recombinant IL-2 such that they were selectively delivered into spontaneously arising tumors in a transgenic mouse model of islet cell carcinogenesis. Intravenous injection of these agents, either separately or together, led to accumulation in the vicinity of tumor neovessels without toxic side effects. Although both molecules are critical for adaptive immunity, the most profound effects were seen in endothelial cells. Combined, local anti-CD40 and IL-2 therapy reduced tumor vascularity and significantly delayed tumor growth in mice. Remarkably, tumor-bearing mice remained disease-free long-term when targeted anti-CD40 and IL-2 were combined with transfers of preactivated antitumor immune cells. In this therapeutic setting, triggering of CD40 on endothelial cells induced an inflammatory response of the vessel wall and facilitated effector cell accumulation in the tumor parenchyma while IL-2 promoted antigen-specific immune cell persistence. We believe this is a novel and highly effective anticancer approach, whereby tumor stroma is “conditioned” for enhanced immune cell entry and survival, facilitating immune-mediated tumor destruction and leading to a sustained antitumor response.
Juliana Hamzah, Delia Nelson, Gerd Moldenhauer, Bernd Arnold, Günter J. Hämmerling, Ruth Ganss
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 294 | 52 |
69 | 26 | |
Figure | 191 | 14 |
Supplemental data | 27 | 1 |
Citation downloads | 35 | 0 |
Totals | 616 | 93 |
Total Views | 709 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.