Sepsis is characterized by a systemic response to severe infection. Although the inflammatory phase of sepsis helps eradicate the infection, it can have detrimental consequences if left unchecked. Therapy directed against inflammatory mediators of sepsis has shown little success and has the potential to impair innate antimicrobial defenses. Heme oxygenase-1 (HO-1) and the product of its enzymatic reaction, CO, have beneficial antiinflammatory properties, but little is known about their effects on microbial sepsis. Here, we have demonstrated that during microbial sepsis, HO-1–derived CO plays an important role in the antimicrobial process without inhibiting the inflammatory response. HO-1–deficient mice suffered exaggerated lethality from polymicrobial sepsis. Targeting HO-1 to SMCs and myofibroblasts of blood vessels and bowel ameliorated sepsis-induced death associated with Enterococcus faecalis, but not Escherichia coli, infection. The increase in HO-1 expression did not suppress circulating inflammatory cells or their accumulation at the site of injury but did enhance bacterial clearance by increasing phagocytosis and the endogenous antimicrobial response. Furthermore, injection of a CO-releasing molecule into WT mice increased phagocytosis and rescued HO-1–deficient mice from sepsis-induced lethality. These data advocate HO-1–derived CO as an important mediator of the host defense response to sepsis and suggest CO administration as a possible treatment for the disease.
Su Wol Chung, Xiaoli Liu, Alvaro A. Macias, Rebecca M. Baron, Mark A. Perrella
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 764 | 45 |
191 | 23 | |
Figure | 340 | 16 |
Supplemental data | 39 | 0 |
Citation downloads | 80 | 0 |
Totals | 1,414 | 84 |
Total Views | 1,498 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.