Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sustained pharmacological inhibition of δPKC protects against hypertensive encephalopathy through prevention of blood-brain barrier breakdown in rats
Xin Qi, … , Raymond A. Sobel, Daria Mochly-Rosen
Xin Qi, … , Raymond A. Sobel, Daria Mochly-Rosen
Published December 20, 2007
Citation Information: J Clin Invest. 2008;118(1):173-182. https://doi.org/10.1172/JCI32636.
View: Text | PDF
Research Article

Sustained pharmacological inhibition of δPKC protects against hypertensive encephalopathy through prevention of blood-brain barrier breakdown in rats

  • Text
  • PDF
Abstract

Hypertensive encephalopathy is a potentially fatal condition associated with cerebral edema and the breakdown of the blood-brain barrier (BBB). The molecular pathways leading to this condition, however, are unknown. We determined the role of δPKC, which is thought to regulate microvascular permeability, in the development of hypertensive encephalopathy using δV1-1 — a selective peptide inhibitor of δPKC. As a model of hypertensive encephalopathy, Dahl salt-sensitive rats were fed an 8% high-salt diet from 6 weeks of age and then were infused s.c. with saline, control TAT peptide, or δV1-1 using osmotic minipumps. The mortality rate and the behavioral symptoms of hypertensive encephalopathy decreased significantly in the δV1-1–treated group relative to the control-treated group, and BBB permeability was reduced by more than 60%. Treatment with δV1-1 was also associated with decreased δPKC accumulation in capillary endothelial cells and in the endfeet of capillary astrocytes, which suggests decreased microvasculature disruption. Treatment with δV1-1 prevented hypertension-induced tight junction disruption associated with BBB breakdown, which suggests that δPKC may specifically act to dysregulate tight junction components. Together, these results suggest that δPKC plays a role in the development of hypertension-induced encephalopathy and may be a therapeutic target for the prevention of BBB disruption.

Authors

Xin Qi, Koichi Inagaki, Raymond A. Sobel, Daria Mochly-Rosen

×

Figure 4

Sustained δV1-1 treatment preserves the integrity of the cerebral capillaries of hypertensive rats.

Options: View larger image (or click on image) Download as PowerPoint
Sustained δV1-1 treatment preserves the integrity of the cerebral capill...
Brain cortex samples were collected from 13-week-old DS rats treated with either TAT or δV1-1 and stained with δPKC using the immunogold labeling method. (A) Middle: δPKC immunogold labeling in endothelial cells and improved morphology of basal lamina (BL) after δV1-1 treatment were noted. L, vessel lumen. A scheme of the area studied is shown at left; a histogram depicting quantitative data of gold particles in endothelial cells is shown at right. Data are mean ± SEM (n = 3 animals per group). F = 16.75, df = 2. *P < 0.05 versus TAT treatment; #P < 0.05 versus normotensive rats. (B) Increased δPKC levels in the endfeet of astrocytes (AS) that envelop vessel walls were seen in rat brains from hypertensive rats, which were blocked by δV1-1 treatment. (C) Immunohistochemical analysis of astrocytes surrounding cerebral vessels. Frozen sections of rats treated with TAT or δV1-1 were stained with AQP4, a marker of astrocyte endfeet process. Immunostaining of AQP4 around the cerebral vessel wall was observed. n = 3 rats per group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts