Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells
Laure A. Moutouh-de Parseval, Dominique Verhelle, Emilia Glezer, Kristen Jensen-Pergakes, Gregory D. Ferguson, Laura G. Corral, Christopher L. Morris, George Muller, Helen Brady, Kyle Chan
Laure A. Moutouh-de Parseval, Dominique Verhelle, Emilia Glezer, Kristen Jensen-Pergakes, Gregory D. Ferguson, Laura G. Corral, Christopher L. Morris, George Muller, Helen Brady, Kyle Chan
View: Text | PDF
Research Article Hematology

Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells

  • Text
  • PDF
Abstract

Sickle-cell disease (SCD) and β thalassemia constitute worldwide public health problems. New therapies, including hydroxyurea, have attempted to augment the synthesis of fetal hemoglobin (HbF) and improve current treatment. Lenalidomide and pomalidomide are members of a class of immunomodulators used as anticancer agents. Because clinical trials have demonstrated that lenalidomide reduces or eliminates the need for transfusions in some patients with disrupted blood cell production, we investigated the effects of lenalidomide and pomalidomide on erythropoiesis and hemoglobin synthesis. We used an in vitro erythropoiesis model derived from human CD34+ progenitor cells from normal and SCD donors. We found that both compounds slowed erythroid maturation, increased proliferation of immature erythroid cells, and regulated hemoglobin transcription, resulting in potent induction of HbF without the cytotoxicity associated with other HbF inducers. When combined with hydroxyurea, pomalidomide and, to a lesser extent, lenalidomide were found to have synergistic effects on HbF upregulation. Our results elucidate what we believe to be a new mechanism of action of pomalidomide and lenalidomide and support the hypothesis that pomalidomide, used alone or in combination with hydroxyurea, may improve erythropoiesis and increase the ratio of fetal to adult hemoglobin. These findings support the evaluation of pomalidomide as an innovative new therapy for β-hemoglobinopathies.

Authors

Laure A. Moutouh-de Parseval, Dominique Verhelle, Emilia Glezer, Kristen Jensen-Pergakes, Gregory D. Ferguson, Laura G. Corral, Christopher L. Morris, George Muller, Helen Brady, Kyle Chan

×

Figure 4

Pomalidomide modulates histone H3 acetylation on β-globin locus during erythroid differentiation of CD34+ cells.

Options: View larger image (or click on image) Download as PowerPoint
Pomalidomide modulates histone H3 acetylation on β-globin locus during e...
(A and B) CD34+ cells differentiated to the erythroid lineage in the presence of vehicle control or pomalidomide at 10 μM for 1 day, 3 days, or 6 days were subjected to ChIP using an anti-acetyl histone H3 K9 and K14 antibody and analyzed by RT-PCR using primers specific for Gγ globin, Aγ globin, and β promoters (A) and for LCR, HS2, and HS3 (B). Results are expressed as enrichment of genes of interest relative to the input DNA and are normalized to the results obtained with GAPDH-positive control. Values represent mean ± SEM (n = 3) and are representative of 2 independent experiments. (C) Acetylation of histone H3 on K9 and K14 was monitored by Western blot after 3 and 6 days of erythroid differentiation in the presence of vehicle control or pomalidomide at 10 μM. *P < 0.05; **P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts