Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A Foxo/Notch pathway controls myogenic differentiation and fiber type specification
Tadahiro Kitamura, … , Jan Kitajewski, Domenico Accili
Tadahiro Kitamura, … , Jan Kitajewski, Domenico Accili
Published September 4, 2007
Citation Information: J Clin Invest. 2007;117(9):2477-2485. https://doi.org/10.1172/JCI32054.
View: Text | PDF
Research Article Development Article has an altmetric score of 10

A Foxo/Notch pathway controls myogenic differentiation and fiber type specification

  • Text
  • PDF
Abstract

Forkhead box O (Foxo) transcription factors govern metabolism and cellular differentiation. Unlike Foxo-dependent metabolic pathways and target genes, the mechanisms by which these proteins regulate differentiation have not been explored. Activation of Notch signaling mimics the effects of Foxo gain of function on cellular differentiation. Using muscle differentiation as a model system, we show that Foxo physically and functionally interacts with Notch by promoting corepressor clearance from the Notch effector Csl, leading to activation of Notch target genes. Inhibition of myoblast differentiation by constitutively active Foxo1 is partly rescued by inhibition of Notch signaling while Foxo1 loss of function precludes Notch inhibition of myogenesis and increases myogenic determination gene (MyoD) expression. Accordingly, conditional Foxo1 ablation in skeletal muscle results in increased formation of MyoD-containing (fast-twitch) muscle fibers and altered fiber type distribution at the expense of myogenin-containing (slow-twitch) fibers. Notch/Foxo1 cooperation may integrate environmental cues through Notch with metabolic cues through Foxo1 to regulate progenitor cell maintenance and differentiation.

Authors

Tadahiro Kitamura, Yukari Ido Kitamura, Yasuhiro Funahashi, Carrie J. Shawber, Diego H. Castrillon, Ramya Kollipara, Ronald A. DePinho, Jan Kitajewski, Domenico Accili

×

Figure 2

Quantitative analysis of C2C12 differentiation.

Options: View larger image (or click on image) Download as PowerPoint
Quantitative analysis of C2C12 differentiation.
(A) Western blotting ana...
(A) Western blotting analysis of myosin expression in C2C12 cells. (B) Morphometric analysis of myosin-positive cells. Results from differentiation experiments were analyzed by scoring the number of myosin-immunostained cells as a percentage of all DAPI-positive cells. (C) DBD-Foxo1-ADA reporter gene assays. We carried out reporter gene assays using the canonical Foxo1-responsive Igfbp1 promoter (left panel) and the Hes1 promoter (right panel) in cells cotransfected with Foxo1-ADA or DBD-Foxo1-ADA. Western blot (inset) demonstrates that expression levels of the 2 proteins are similar. An asterisk indicates P < 0.01 by ANOVA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 7 patents
Mentioned by 1 peer review sites
Referenced in 2 Wikipedia pages
214 readers on Mendeley
See more details