Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Principles of adoptive T cell cancer therapy
Carl H. June
Carl H. June
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1204-1212. https://doi.org/10.1172/JCI31446.
View: Text | PDF
Review Series

Principles of adoptive T cell cancer therapy

  • Text
  • PDF
Abstract

The transfusion of T cells, also called adoptive T cell therapy, is an effective treatment for viral infections and has induced regression of cancer in early-stage clinical trials. However, recent advances in cellular immunology and tumor biology are guiding new approaches to adoptive T cell therapy. For example, use of engineered T cells is being tested as a strategy to improve the functions of effector and memory T cells, and manipulation of the host to overcome immunotoxic effects in the tumor microenvironment has led to promising results in early-stage clinical trials. Challenges that face the field and must be addressed before adoptive T cell therapy can be translated into routine clinical practice are discussed.

Authors

Carl H. June

×

Figure 3

Telomeres and telomerase function in T cell subsets.

Options: View larger image (or click on image) Download as PowerPoint
Telomeres and telomerase function in T cell subsets.
(A) In mammalian ce...
(A) In mammalian cells, telomeres are structures at the ends of all linear chromosomes that consist of hexanucleotide repeats [(TTAGGG)n] and several associated protein complexes. The two components of telomerase are illustrated — TERC and TERT. NBS, Nijmegen breakage syndrome; MRE, meiotic recombination 11 homolog; L22, ribosomal L22 protein; TEP1, telomerase-associated protein 1. (B) The relationship of telomere length to cell division is not constant. There is a relatively constant loss of telomere length during normal cell division in the absence of compensatory mechanisms in most cells. However, telomere length can also increase with cell division in some lymphocyte subsets. Human T cells can partially sustain telomere length during cell division. Cellular stress can accelerate telomere loss rates.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts