Genomic actions induced by 1α25-dihydroxyvitamin D3 [1,25(OH)2D3] are crucial for normal bone metabolism, mainly because they regulate active intestinal calcium transport. To evaluate whether the vitamin D receptor (VDR) has a specific role in growth-plate development and endochondral bone formation, we investigated mice with conditional inactivation of VDR in chondrocytes. Growth-plate chondrocyte development was not affected by the lack of VDR. Yet vascular invasion was impaired, and osteoclast number was reduced in juvenile mice, resulting in increased trabecular bone mass. In vitro experiments confirmed that VDR signaling in chondrocytes directly regulated osteoclastogenesis by inducing receptor activator of NF-κB ligand (RANKL) expression. Remarkably, mineral homeostasis was also affected in chondrocyte-specific VDR-null mice, as serum phosphate and 1,25(OH)2D levels were increased in young mice, in whom growth-plate activity is important. Both in vivo and in vitro analysis indicated that VDR inactivation in chondrocytes reduced the expression of FGF23 by osteoblasts and consequently led to increased renal expression of 1α-hydroxylase and of sodium phosphate cotransporter type IIa. Taken together, our findings provide evidence that VDR signaling in chondrocytes is required for timely osteoclast formation during bone development and for the endocrine action of bone in phosphate homeostasis.
Ritsuko Masuyama, Ingrid Stockmans, Sophie Torrekens, Riet Van Looveren, Christa Maes, Peter Carmeliet, Roger Bouillon, Geert Carmeliet
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 577 | 216 |
81 | 45 | |
Figure | 278 | 23 |
Table | 56 | 0 |
Supplemental data | 36 | 2 |
Citation downloads | 62 | 0 |
Totals | 1,090 | 286 |
Total Views | 1,376 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.