VEGF-A promotes angiogenesis in many tissues. Here we report that choroidal neovascularization (CNV) incited by injury was increased by excess VEGF-A before injury but was suppressed by VEGF-A after injury. This unorthodox antiangiogenic effect was mediated via VEGFR-1 activation and VEGFR-2 deactivation, the latter via Src homology domain 2–containing (SH2-containing) tyrosine phosphatase-1 (SHP-1). The VEGFR-1–specific ligand placental growth factor-1 (PlGF-1), but not VEGF-E, which selectively binds VEGFR-2, mimicked these responses. Excess VEGF-A increased CNV before injury because VEGFR-1 activation was silenced by secreted protein, acidic and rich in cysteine (SPARC). The transient decline of SPARC after injury revealed a temporal window in which VEGF-A signaling was routed principally through VEGFR-1. These observations indicate that therapeutic design of VEGF-A inhibition should include consideration of the level and activity of SPARC.
Miho Nozaki, Eiji Sakurai, Brian J. Raisler, Judit Z. Baffi, Jassir Witta, Yuichiro Ogura, Rolf A. Brekken, E. Helene Sage, Balamurali K. Ambati, Jayakrishna Ambati
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 592 | 48 |
123 | 20 | |
Figure | 323 | 6 |
Citation downloads | 89 | 0 |
Totals | 1,127 | 74 |
Total Views | 1,201 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.