Ripglut1;glut2–/– mice have no endogenous glucose transporter type 2 (glut2) gene expression but rescue glucose-regulated insulin secretion. Control of glucagon plasma levels is, however, abnormal, with fed hyperglucagonemia and insensitivity to physiological hypo- or hyperglycemia, indicating that GLUT2-dependent sensors control glucagon secretion. Here, we evaluated whether these sensors were located centrally and whether GLUT2 was expressed in glial cells or in neurons. We showed that ripglut1;glut2–/– mice failed to increase plasma glucagon levels following glucoprivation induced either by i.p. or intracerebroventricular 2-deoxy-D-glucose injections. This was accompanied by failure of 2-deoxy-D-glucose injections to activate c-Fos–like immunoreactivity in the nucleus of the tractus solitarius and the dorsal motor nucleus of the vagus. When glut2 was expressed by transgenesis in glial cells but not in neurons of ripglut1;glut2–/– mice, stimulated glucagon secretion was restored as was c-Fos–like immunoreactive labeling in the brainstem. When ripglut1;glut2–/– mice were backcrossed into the C57BL/6 genetic background, fed plasma glucagon levels were also elevated due to abnormal autonomic input to the α cells; glucagon secretion was, however, stimulated by hypoglycemic stimuli to levels similar to those in control mice. These studies identify the existence of central glucose sensors requiring glut2 expression in glial cells and therefore functional coupling between glial cells and neurons. These sensors may be activated at different glycemic levels depending on the genetic background.
Nell Marty, Michel Dallaporta, Marc Foretz, Martine Emery, David Tarussio, Isabelle Bady, Christophe Binnert, Friedrich Beermann, Bernard Thorens
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 856 | 190 |
74 | 58 | |
Figure | 281 | 26 |
Citation downloads | 43 | 0 |
Totals | 1,254 | 274 |
Total Views | 1,528 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.