ATP-sensitive potassium (KATP) channels, so named because they are inhibited by intracellular ATP, play key physiological roles in many tissues. In pancreatic β cells, these channels regulate glucose-dependent insulin secretion and serve as the target for sulfonylurea drugs used to treat type 2 diabetes. This review focuses on insulin secretory disorders, such as congenital hyperinsulinemia and neonatal diabetes, that result from mutations in KATP channel genes. It also considers the extent to which defective regulation of KATP channel activity contributes to the etiology of type 2 diabetes.
Frances M. Ashcroft
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,319 | 2,646 |
130 | 143 | |
Figure | 557 | 25 |
Table | 87 | 0 |
Citation downloads | 77 | 0 |
Totals | 3,170 | 2,814 |
Total Views | 5,984 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.