TNF receptor–associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-κB (RANK). This event is central to normal osteoclastogenesis. We discovered that TRAF6 also interacts with FHL2 (four and a half LIM domain 2), a LIM domain–only protein that functions as a transcriptional coactivator or corepressor in a cell-type–specific manner. FHL2 mRNA and protein are undetectable in marrow macrophages and increase pari passu with osteoclast differentiation in vitro. FHL2 inhibits TRAF6-induced NF-κB activity in wild-type osteoclast precursors and, in keeping with its role as a suppressor of TRAF6-mediated RANK signaling, TRAF6/RANK association is enhanced in FHL2–/– osteoclasts. FHL2 overexpression delays RANK ligand–induced (RANKL-induced) osteoclast formation and cytoskeletal organization. Interestingly, osteoclast-residing FHL2 is not detectable in naive wild-type mice, in vivo, but is abundant in those treated with RANKL and following induction of inflammatory arthritis. Reflecting increased RANKL sensitivity, osteoclasts generated from FHL2–/– mice reach maturation and optimally organize their cytoskeleton earlier than their wild-type counterparts. As a consequence, FHL2–/– osteoclasts are hyperresorptive, and mice lacking the protein undergo enhanced RANKL and inflammatory arthritis–stimulated bone loss. FHL2 is, therefore, an antiosteoclastogenic molecule exerting its effect by attenuating TRAF6-mediated RANK signaling.
Shuting Bai, Hideki Kitaura, Haibo Zhao, Ju Chen, Judith M. Müller, Roland Schüle, Bryant Darnay, Deborah V. Novack, F. Patrick Ross, Steven L. Teitelbaum
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 543 | 32 |
77 | 28 | |
Figure | 487 | 10 |
Citation downloads | 54 | 0 |
Totals | 1,161 | 70 |
Total Views | 1,231 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.