Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis
Eric Ackah, … , Kenneth Walsh, William C. Sessa
Eric Ackah, … , Kenneth Walsh, William C. Sessa
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2119-2127. https://doi.org/10.1172/JCI24726.
View: Text | PDF
Categories: Research Article Vascular biology

Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

  • Text
  • PDF
Abstract

Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Akt1–/–) mice also have reduced endothelial progenitor cell (EPC) mobilization in response to ischemia, and reintroduction of WT EPCs, but not EPCs isolated from Akt1–/– mice, into WT mice improves limb blood flow after ischemia. Mechanistically, the loss of Akt1 reduces the basal phosphorylation of several Akt substrates, the migration of fibroblasts and ECs, and NO release. Reconstitution of Akt1–/– ECs with Akt1 rescues the defects in substrate phosphorylation, cell migration, and NO release. Thus, the Akt1 isoform exerts an essential role in blood flow control, cellular migration, and NO synthesis during postnatal angiogenesis.

Authors

Eric Ackah, Jun Yu, Stefan Zoellner, Yasuko Iwakiri, Carsten Skurk, Rei Shibata, Noriyuki Ouchi, Rachael M. Easton, Gennaro Galasso, Morris J. Birnbaum, Kenneth Walsh, William C. Sessa

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Characterization of tissue and vascular expression of Akt1 and Akt2. (A)...
Characterization of tissue and vascular expression of Akt1 and Akt2. (A) RT-PCR analysis of RNA isolated from mouse lung fibroblasts using Akt1-, Akt2-, and Hsp90-specific primers. (B) Expression of Akt1 and Akt2 protein in homogenates from heart and gastrocnemius muscle by Western blot with antibodies against Akt1, Akt2, or Hsp90 as a loading control. (C) Akt1 and Akt2 expression in various blood vessels by Western blot using antibodies against Akt1, Akt2, and β-actin as a loading control. (D) p-Akt levels in various blood vessels from WT, Akt1–/–, and Akt2–/– mice. Lysates from 3 animals per group were pooled and analyzed by Western blot using p-AktS473– and p-AktT308–specific Akt antibodies. (E) Relative expression of Akt isoforms in blood vessels. Lysates from WT mice were analyzed by SDS-PAGE and quantitative Western blot. Relative protein amounts of Akt1 and Akt2 in the vessels were quantified using standard curves obtained by running recombinant mouse Akt1 and Akt2 proteins. Data represent the mean of 2 pooled samples; n = 3.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts