Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Birth pangs: the stressful origins of lymphocytes
Shiv Pillai
Shiv Pillai
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):224-227. https://doi.org/10.1172/JCI24238.
View: Text | PDF
Commentary

Birth pangs: the stressful origins of lymphocytes

  • Text
  • PDF
Abstract

Inositol-requiring enzyme 1 (IRE1) is a transmembrane protein that signals from the ER and contributes to the generation of an active spliced form of the transcriptional regulator X-box–binding protein 1 (XBP1). XBP1 is required for the terminal differentiation of B lymphocytes into plasma cells, and IRE1 also participates in this differentiation event. A study in this issue of the JCI reveals, quite unexpectedly, that IRE1 is also required early in B lymphocyte development for the induction of the machinery that mediates Ig gene rearrangement.

Authors

Shiv Pillai

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Multiple sensors initiate the UPR in vertebrates. IRE1α and PERK are int...
Multiple sensors initiate the UPR in vertebrates. IRE1α and PERK are integral-membrane ER kinases whose lumenal domains are triggered by misfolded proteins in the ER. IRE1α and its yeast homolog, IRE1, contain a lumenal stress-sensing domain (blue) as well as cytosolic kinase (magenta) and endoribonuclease (RNaseL, red) domains. ATF6 is another stress sensor, which is cleaved in response to stress to yield a fragment (green) that is transported to the nucleus. Both ATF6 and Blimp-1 (not shown) may contribute to the transcriptional induction of XBP1. Very little is understood as to how IRE1α, a kinase that is activated by unfolded proteins in the ER, contributes to the induction of Rag1, Rag2, and TdT to initiate and sustain V(D)J recombination during early B cell development.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts