The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked human genetic disorder characterized by mental retardation, congenital cataracts, and renal tubular dysfunction. The Lowe syndrome gene, OCRL1, encodes a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi complex. The pathogenesis of Lowe syndrome due to deficiency of a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi complex is unknown. We have used targeted disruption in embryonic stem cells to make mice deficient in Ocrl1, the mouse homologue for OCRL1, as an animal model for the disease. Surprisingly, mice deficient in Ocrl1 do not develop the congenital cataracts, renal Fanconi syndrome, or neurological abnormalities seen in the human disorder. We hypothesized that Ocrl1 deficiency is complemented in mice by inositol polyphosphate 5-phosphatase (Inpp5b), an autosomal gene that encodes a phosphatidylinositol bisphosphate 5-phosphatase highly homologous to Ocrl1. We created mice deficient in Inpp5b; the mice were viable and fertile without phenotype except for testicular degeneration in males beginning after sexual maturation. We crossed mice deficient in Ocrl1 to mice deficient in Inpp5b. No liveborn mice or embryos lacking both enzymes were found, demonstrating that Ocrl1 and Inpp5b have overlapping functions in mice and suggesting that the lack of phenotype in Ocrl1-deficient mice may be due to compensating Inpp5b function.
P A Jänne, S F Suchy, D Bernard, M MacDonald, J Crawley, A Grinberg, A Wynshaw-Boris, H Westphal, R L Nussbaum
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 333 | 34 |
96 | 36 | |
Citation downloads | 36 | 0 |
Totals | 465 | 70 |
Total Views | 535 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.