Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury
Tom Luedde, … , Manolis Pasparakis, Christian Trautwein
Tom Luedde, … , Manolis Pasparakis, Christian Trautwein
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):849-859. https://doi.org/10.1172/JCI23493.
View: Text | PDF
Article Hepatology

Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury

  • Text
  • PDF
Abstract

The inhibitor of NF-κB (I-κB) kinase (IKK) complex consists of 3 subunits, IKK1, IKK2, and NF-κB essential modulator (NEMO), and is involved in the activation of NF-κB by various stimuli. IKK2 or NEMO constitutive knockout mice die during embryogenesis as a result of massive hepatic apoptosis. Therefore, we examined the role of IKK2 in TNF-induced apoptosis and ischemia/reperfusion (I/R) injury in the liver by using conditional knockout mice. Hepatocyte-specific ablation of IKK2 did not lead to impaired activation of NF-κB or increased apoptosis after TNF-α stimulation whereas conditional NEMO knockout resulted in complete block of NF-κB activation and massive hepatocyte apoptosis. In a model of partial hepatic I/R injury, mice lacking IKK2 in hepatocytes displayed significantly reduced liver necrosis and inflammation than wild-type mice. AS602868, a novel chemical inhibitor of IKK2, protected mice from liver injury due to I/R without sensitizing them toward TNF-induced apoptosis and could therefore emerge as a new pharmacological therapy for liver resection, hemorrhagic shock, or transplantation surgery.

Authors

Tom Luedde, Ulrike Assmus, Torsten Wüstefeld, Andreas Meyer zu Vilsendorf, Tania Roskams, Mark Schmidt-Supprian, Klaus Rajewsky, David A. Brenner, Michael P. Manns, Manolis Pasparakis, Christian Trautwein

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
Activation of NF-κB and induction of NF-κB target genes after I/R is dep...
Activation of NF-κB and induction of NF-κB target genes after I/R is dependent on functional IKK2. (A) Nuclear protein extracts (5 μg) from livers of Ikk2f/f and Ikk2Δhepa mice at different time points after I/R were subjected to a gel-retardation assay with an NF-κB consensus oligonucleotide. In lanes 9 and 10, antibodies for the NF-κB subunits p50 or p65 were added as supershift control. (B) Immunohistochemical staining for iNOS at 6 hours after I/R in Ikk2f/f and Ikk2Δhepa mice. Original magnification, ×40. Results are representative of those obtained in mice (n = 4). (C) Immunohistochemical staining for TNF-α at 6 hours after I/R. Original magnification, ×40. The number of TNF-α–positive cells was quantified (right panel). Values are mean ± SD for independent animals (n = 4). The asterisk indicates statistical significance: P < 0.01 versus Ikk2f/f control mice. (D) Kupffer cells were isolated from livers of Ikk2f/f and Ikk2Δhepa mice and stained with an antibody against the F4/80 antigen, which is a macrophage-specific marker, to verify the specificity of the preparation procedure. Equal expression of IKK2 was verified by staining with a polyclonal antibody against IKK2. Cells were stimulated with 1 μg/ml LPS for 1 hour and TNF-α expression examined by immunohistochemical staining to prove that Kupffer cells in the livers of Ikk2Δhepa mice are functionally active. Original magnification, ×400. For negative control, no primary antibody was added.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts