Activating receptor activator of NF-κB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-α–induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF–induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-α promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF.
Kazuhiro Aoki, Hiroaki Saito, Cecile Itzstein, Masaji Ishiguro, Tatsuya Shibata, Roland Blanque, Anower Hussain Mian, Mariko Takahashi, Yoshifumi Suzuki, Masako Yoshimatsu, Akira Yamaguchi, Pierre Deprez, Patrick Mollat, Ramachandran Murali, Keiichi Ohya, William C. Horne, Roland Baron
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 489 | 65 |
79 | 18 | |
Figure | 369 | 6 |
Table | 90 | 0 |
Citation downloads | 55 | 0 |
Totals | 1,082 | 89 |
Total Views | 1,171 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.