Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein.
D A Stoffers, … , V Stanojevic, J F Habener
D A Stoffers, … , V Stanojevic, J F Habener
Published July 1, 1998
Citation Information: J Clin Invest. 1998;102(1):232-241. https://doi.org/10.1172/JCI2242.
View: Text | PDF
Research Article

Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein.

  • Text
  • PDF
Abstract

The homeodomain transcription factor insulin promoter factor-1 (IPF-1) is required for development of the pancreas and also mediates glucose-responsive stimulation of insulin gene transcription. Earlier we described a human subject with pancreatic agenesis attributable to homozygosity for a cytosine deletion in codon 63 of the IPF-1 gene (Pro63fsdelC). Pro63fsdelC resulted in the premature truncation of an IPF-1 protein which lacked the homeodomain required for DNA binding and nuclear localization. Subsequently, we linked the heterozygous state of this mutation with type 2 diabetes mellitus in the extended family of the pancreatic agenesis proband. In the course of expressing the mutant IPF-1 protein in eukaryotic cells, we detected a second IPF-1 isoform, recognized by COOH- but not NH2-terminal-specific antisera. This isoform localizes to the nucleus and retains DNA-binding functions. We provide evidence that internal translation initiating at an out-of-frame AUG accounts for the appearance of this protein. The reading frame crosses over to the wild-type IPF-1 reading frame at the site of the point deletion just carboxy proximal to the transactivation domain. Thus, the single mutated allele results in the translation of two IPF-1 isoproteins, one of which consists of the NH2-terminal transactivation domain and is sequestered in the cytoplasm and the second of which contains the COOH-terminal DNA-binding domain, but lacks the transactivation domain. Further, the COOH-terminal mutant IPF-1 isoform does not activate transcription and inhibits the transactivation functions of wild-type IPF-1. This circumstance suggests that the mechanism of diabetes in these individuals may be due not only to reduced gene dosage, but also to a dominant negative inhibition of transcription of the insulin gene and other beta cell-specific genes regulated by the mutant IPF-1.

Authors

D A Stoffers, V Stanojevic, J F Habener

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 412 31
PDF 60 29
Citation downloads 81 0
Totals 553 60
Total Views 613
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts