Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle.
C Gauthier, … , J L Balligand, H Le Marec
C Gauthier, … , J L Balligand, H Le Marec
Published October 1, 1998
Citation Information: J Clin Invest. 1998;102(7):1377-1384. https://doi.org/10.1172/JCI2191.
View: Text | PDF
Research Article

The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle.

  • Text
  • PDF
Abstract

Beta1- and beta2-adrenoceptors in heart muscle cells mediate the catecholamine-induced increase in the force and frequency of cardiac contraction. Recently, in addition, we demonstrated the functional expression of beta3-adrenoceptors in the human heart. Their stimulation, in marked contrast with that of beta1- and beta2-adrenoceptors, induces a decrease in contractility through presently unknown mechanisms. In the present study, we examined the role of a nitric oxide (NO) synthase pathway in mediating the beta3-adrenoceptor effect on the contractility of human endomyocardial biopsies. The negative inotropic effects of a beta3-adrenoceptor agonist, BRL 37344, and also of norepinephrine in the presence of alpha- and beta1-2-blockade were inhibited both by a nonspecific blocker of NO, methylene blue, and two NO synthase (NOS) inhibitors, L-N-monomethyl-arginine and L-nitroarginine-methyl ester. The effect of the NOS inhibitors was reversed by an excess of L-arginine, the natural substrate of NOS, but not by D-arginine. Moreover, the effects of the beta3-adrenoceptor agonist on contractility were associated with parallel increases in the production of NO and intracellular cGMP, which were also inhibited by NOS inhibitors. Immunohistochemical staining of human ventricular biopsies showed the expression of the endothelial constitutive (eNOS), but not the inducible (iNOS) isoform of NOS in both ventricular myocytes and endothelial cells. These results demonstrate that beta3-adrenoceptor stimulation decreases cardiac contractility through activation of an NOS pathway. Changes in the expression of this pathway may alter the balance between positive and negative inotropic effects of catecholamines on the heart potentially leading to myocardial dysfunction.

Authors

C Gauthier, V Leblais, L Kobzik, J N Trochu, N Khandoudi, A Bril, J L Balligand, H Le Marec

×

Full Text PDF

Download PDF (288.82 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts