Abstract

Estrogen drives both transcriptional activation and proteolysis of estrogen receptor α (ERα; encoded by ESR1). Here we observed variable and overlapping ESR1 mRNA levels in 200 ERα-negative and 50 ERα-positive primary breast cancers examined, which suggests important posttranscriptional ERα regulation. Our results indicate that Src cooperates with estrogen to activate ERα proteolysis. Inducible Src stimulated ligand-activated ERα transcriptional activity and reduced ERα t1/2. Src and ERα levels were inversely correlated in primary breast cancers. ERα-negative primary breast cancers and cell lines showed increased Src levels and/or activity compared with ERα-positive cancers and cells. ERα t1/2 was reduced in ERα-negative cell lines. In both ERα-positive and -negative cell lines, both proteasome and Src inhibitors increased ERα levels. Src inhibition impaired ligand-activated ERα ubiquitylation and increased ERα levels. Src siRNA impaired ligand-activated ERα loss in BT-20 cells. Pretreatment with Src increased ERα ubiquitylation and degradation in vitro. These findings provide what we believe to be a novel link between Src activation and ERα proteolysis and support a model whereby crosstalk between liganded ERα and Src drives ERα transcriptional activity and targets ERα for ubiquitin-dependent proteolysis. Oncogenic Src activation may promote not only proliferation, but also estrogen-activated ERα loss in a subset of ERα-negative breast cancers, altering prognosis and response to therapy.

Authors

Isabel Chu, Angel Arnaout, Sophie Loiseau, Jun Sun, Arun Seth, Chris McMahon, Kathy Chun, Bryan Hennessy, Gordon B. Mills, Zafar Nawaz, Joyce M. Slingerland

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement