The Shumiya cataract rat (SCR) is a hereditary cataractous strain. It is thought that the continuous occurrence of poorly differentiated epithelial cells at the bow area of the lens forms the pathophysiological basis for cataract formation in SCRs. In this study, we attempted to identify the genes associated with cataract formation in SCRs by positional cloning. Genetic linkage analysis revealed the presence of a major cataract locus on chromosome 20 as well as a locus on chromosome 15 that partially suppressed cataract onset. Hypomorphic mutations were identified in genes for lanosterol synthase (Lss) on chromosome 20 and farnesyl diphosphate farnesyl transferase 1 (Fdft1) on chromosome 15, both of which function in the cholesterol biosynthesis pathway. A null mutation for Lss was also identified. Cataract onset was associated with the specific combination of Lss and Fdft1 mutant alleles that decreased cholesterol levels in cataractous lenses to about 57% of normal. Thus, cholesterol insufficiency may underlie the deficient proliferation of lens epithelial cells in SCRs, which results in the loss of homeostatic epithelial cell control of the underlying fiber cells and eventually leads to cataractogenesis. These findings may have some relevance to other types of cataracts, inborn defects of cholesterol synthesis, and the effects of cholesterol-lowering medication.
Masayuki Mori, Guixin Li, Ikuro Abe, Jun Nakayama, Zhanjun Guo, Jinko Sawashita, Tohru Ugawa, Shoko Nishizono, Tadao Serikawa, Keiichi Higuchi, Seigo Shumiya
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 626 | 84 |
82 | 31 | |
Figure | 353 | 8 |
Table | 133 | 0 |
Citation downloads | 64 | 0 |
Totals | 1,258 | 123 |
Total Views | 1,381 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.