CC chemokine ligand 21 (CCL21)/secondary lymphoid chemokine (SLC), a ligand for CC chemokine receptor 7 (CCR7), has been demonstrated to play a vital role in the homing and localization of immune cells to lymphoid tissues, but its role in nonlymphoid tissues largely remains undefined. Here, we provide evidence that CCL21 in lymphoid and nonlymphoid tissues is differentially regulated by lymphotoxin-dependent (LT-dependent) and -independent mechanisms, respectively. This differential regulation is due to the selective regulation of the CCL21-Ser/CCL21a but not the CCL21-Leu/CCL21b gene by the LT and noncanonical NF-κB pathways. This alternate pathway, not dependent on LT or lymphocytes, leading to constitutive expression of CCL21 in nonlymphoid tissues, is critical for the initial recruitment of T lymphocytes to peripheral effector sites. CCL21 expression is subsequently further enhanced in a LT-dependent fashion following airway challenge, potentially facilitating a positive feedback loop to attract additional CCR7+ effector cells. These findings establish an essential role for CCL21 in the recruitment of effector T cells to peripheral tissues and suggest that LT-dependent and -independent regulation of CCL21 plays a role in balancing the central and peripheral immune responses between lymphoid and nonlymphoid tissues.
James C. Lo, Robert K. Chin, Youjin Lee, Hyung-Sik Kang, Yang Wang, Joel V. Weinstock, Theresa Banks, Carl F. Ware, Guido Franzoso, Yang-Xin Fu
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 877 | 229 |
137 | 52 | |
Figure | 350 | 20 |
Citation downloads | 64 | 0 |
Totals | 1,428 | 301 |
Total Views | 1,729 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.