Castration-resistant prostate cancer frequently metastasizes to the liver, and prostate cancer liver metastases often present a neuroendocrine phenotype (i.e., neuroendocrine prostate cancer [NEPC]), but the underlying molecular underpinnings remain unclear. In this issue of the JCI, Liu et al. demonstrate that the neurotransmitter serotonin (also known as 5-hydroxytryptamine), produced by NEPC cells, gained access to and activated neutrophils by modifying histone 3 (H3) to form neutrophil extracellular traps, which in turn promoted NEPC macrometastases in the liver. The study suggests that blocking serotonin transport to neutrophils and inhibiting the enzymes that catalyze serotonin-mediated H3 modifications may represent alternative approaches to treating prostate cancer liver metastases.
Dean G. Tang