Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny
Amy Li, … , Richard Redvers, Pritinder Kaur
Amy Li, … , Richard Redvers, Pritinder Kaur
Published February 1, 2004
Citation Information: J Clin Invest. 2004;113(3):390-400. https://doi.org/10.1172/JCI19140.
View: Text | PDF
Article Article has an altmetric score of 1

Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny

  • Text
  • PDF
Abstract

Given our recent discovery that it is possible to separate human epidermal stem cells of the skin from their more committed progeny (i.e., transit-amplifying cells and early differentiating cells) using FACS techniques, we sought to determine the comparative tissue regeneration ability of these keratinocyte progenitors. We demonstrate that the ability to regenerate a fully stratified epidermis with appropriate spatial and temporal expression of differentiation markers in a short-term in vitro organotypic culture system is an intrinsic characteristic of both epidermal stem and transit-amplifying cells, although the stem cell fraction is most capable of achieving homeostasis. Early differentiating keratinocytes exhibited limited short-term tissue regeneration under specific experimental conditions in this assay, although significant improvement was obtained by manipulating microenvironmental factors, that is, coculture with minimally passaged dermal cells or exogenous supply of the ECM protein laminin-10/11. Importantly, transplantation of all classes of keratinocyte progenitors into an in vivo setting demonstrated that tissue regeneration can be elicited from stem, transit-amplifying, and early differentiating keratinocytes for up to 10 weeks. These data illustrate that significant proliferative and tissue-regenerative capacity resides not only in keratinocyte stem cells as expected, but also in their more committed progeny, including early differentiating cells.

Authors

Amy Li, Normand Pouliot, Richard Redvers, Pritinder Kaur

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 834 54
PDF 188 29
Figure 388 5
Citation downloads 94 0
Totals 1,504 88
Total Views 1,592
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Highlighted by 1 platforms
28 readers on Mendeley
See more details