Chimeric antigen receptor (CAR) T cell therapy shows promise for various diseases. Our studies in humanized mice and nonhuman primates demonstrate that hematopoietic stem cells (HSCs) modified with anti-HIV CAR achieve lifelong engraftment, providing functional antiviral CAR-T cells that reduce viral rebound after antiretroviral therapy (ART) withdrawal. However, T cell exhaustion due to chronic immune activation remains a key obstacle to sustained CAR-T efficacy, necessitating additional measures to achieve functional cure. We recently showed that low-dose rapamycin treatment reduced inflammation and improved anti-HIV T cell function in HIV-infected humanized mice. Here, we report that rapamycin improved CAR-T cell function both in vitro and in vivo. In vitro treatment with rapamycin enhanced CAR-T cell mitochondrial respiration and cytotoxicity. In vivo treatment with low-dose rapamycin in HIV-infected, CAR-HSC mice decreased chronic inflammation, prevented exhaustion of CAR-T cells, and improved CAR-T control of viral replication. RNA-sequencing analysis of CAR-T cells from humanized mice showed that rapamycin downregulated multiple checkpoint inhibitors and upregulated key survival genes. Mice treated with CAR-HSCs and rapamycin had delayed viral rebound after ART and reduced HIV reservoir compared with those treated with CAR-HSCs alone. These findings suggest that HSC-based anti-HIV CAR-T cells combined with rapamycin treatment are a promising approach for treating persistent inflammation and improving immune control of HIV replication.
Wenli Mu, Shallu Tomer, Jeffrey Harding, Nandita Kedia, Valerie Rezek, Ethan Cook, Vaibahavi Patankar, Mayra A. Carrillo, Heather Martin, Hwee Ng, Li Wang, Matthew D. Marsden, Scott G. Kitchen, Anjie Zhen
Usage data is cumulative from February 2025 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,272 | 0 |
463 | 0 | |
Figure | 110 | 0 |
Supplemental data | 140 | 0 |
Citation downloads | 39 | 0 |
Totals | 3,024 | 0 |
Total Views | 3,024 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.