Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), telogen (quiescence), and catagen (regression). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF. Here, we report that the transcription factor Krox20 is enriched in an epidermal stem cell population located in the upper/ middle HF. Expression analyses and lineage tracing using inducible Krox20-CreERT showed that Krox20-lineage cells migrate out of this HF region and contribute to the formation of bulge in the HF, serving as ancestors of bulge stem cells. In vivo depletion of these cells arrests HF morphogenesis. This study identifies a novel marker for an epidermal stem cell population that is indispensable for hair homeostasis.
Elnaz Ghotbi, Edem Tchegnon, Zhiguo Chen, Stephen Li, Tracey Shipman, Yong Wang, Jenny Raman, Yumeng Zhang, Renee M. McKay, Chung-Ping Liao, Lu Q. Le
Usage data is cumulative from October 2024 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,077 | 0 |
402 | 0 | |
Supplemental data | 133 | 0 |
Citation downloads | 102 | 0 |
Totals | 1,714 | 0 |
Total Views | 1,714 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.