Fibrosis of the lower abdominal muscle (LAM) contributes to muscle weakening and inguinal hernia formation, an ailment that affects a noteworthy 50% of men by age 75 and necessitates surgical correction as the singular therapy. Despite its prevalence, the mechanisms driving LAM fibrosis and hernia development remain poorly understood. Using a humanized mouse model that replicates the elevated skeletal muscle tissue estrogen concentrations seen in aging men, we identified estrogen receptor-α (ESR1) as a key driver of LAM fibroblast proliferation, extracellular matrix deposition, and hernia formation. Fibroblast-specific ESR1 ablation effectively prevented muscle fibrosis and herniation, while pharmacological ESR1 inhibition with fulvestrant reversed hernias and restored normal muscle architecture. Multiomics analyses of in vitro LAM fibroblasts from humanized mice unveiled an estrogen/ESR1-mediated activation of a distinct profibrotic cistrome and gene expression signature, concordant with observations in inguinal hernia tissues in human males. Our findings hold significant promise for prospective medical interventions targeting fibrotic conditions and present non-surgical avenues for addressing inguinal hernias.
Tanvi Potluri, Tianming You, Ping Yin, John Coon V, Jonah J. Stulberg, Yang Dai, David J. Escobar, Richard L. Lieber, Hong Zhao, Serdar E. Bulun
Fibroblast-specific ablation of ESR1 in