Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti–TIM-3 therapy in mice
Nana Talvard-Balland, … , Vijay K. Kuchroo, Robert Zeiser
Nana Talvard-Balland, … , Vijay K. Kuchroo, Robert Zeiser
Published June 25, 2024
Citation Information: J Clin Invest. 2024;134(16):e177460. https://doi.org/10.1172/JCI177460.
View: Text | PDF
Research Article

Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti–TIM-3 therapy in mice

  • Text
  • PDF
Abstract

Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti–TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti–TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti–TIM-3 treatment–mediated GVL effects are Tc induced. In contrast to anti–programmed cell death protein 1 (anti–PD-1) and anti–cytotoxic T lymphocyte–associated protein 4 (anti–CTLA-4) treatment, anti–TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post–allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti–TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti–TIM-3 Ab in patients with AML relapse after allo-HCT.

Authors

Nana Talvard-Balland, Lukas M. Braun, Karen O. Dixon, Melissa Zwick, Helena Engel, Alina Hartmann, Sandra Duquesne, Livius Penter, Geoffroy Andrieux, Lukas Rindlisbacher, Andrea Acerbis, Jule Ehmann, Christoph Köllerer, Michela Ansuinelli, Andres Rettig, Kevin Moschallski, Petya Apostolova, Tilman Brummer, Anna L. Illert, Markus A. Schramm, Yurong Cheng, Anna Köttgen, Justus Duyster, Hans D. Menssen, Jerome Ritz, Bruce R. Blazar, Melanie Boerries, Annette Schmitt-Gräff, Nurefsan Sariipek, Peter Van Galen, Joerg M. Buescher, Nina Cabezas-Wallscheid, Heike L. Pahl, Erika L. Pearce, Robert J. Soiffer, Catherine J. Wu, Luca Vago, Burkhard Becher, Natalie Köhler, Tobias Wertheimer, Vijay K. Kuchroo, Robert Zeiser

×

Figure 5

Deletion of TIM-3 in CD8+ Tc leads to TPEX expansion.

Options: View larger image (or click on image) Download as PowerPoint
Deletion of TIM-3 in CD8+ Tc leads to TPEX expansion.
(A–E) BALB/c recip...
(A–E) BALB/c recipient mice were injected i.v. with WEHI-3B AML cells (BALB/c background) and 5 × 106 allogeneic Havcr2fl/fl (n = 2) and Havcr2fl/fl;E8icre/+ (n = 2) BM and Tc. Tc were isolated at day 23 and stained with an oligo-tagged H-2Kb (donor) Ab allowing scRNA-Seq analysis of FACS-sorted donor Tc. (A) UMAP visualization of 10 clusters of CD8+ Tc. (B) Feature plots showing the expression levels of different marker genes relevant for the characterization of the respective cluster. (C) Bar diagram representing the frequency of the different CD8+ Tc clusters. Adjusted P values were calculated using Fisher’s test. (D) Expression levels of key genes differentially expressed in Tc from AML-bearing mice receiving Havcr2fl/fl (left) and Havcr2fl/fl;E8icre/+ (right) BM/Tc in cluster 6. (E) Score of the functional signature enriched in Tc from AML-bearing mice receiving Havcr2fl/fl;E8icre/+ BM/Tc compared with Havcr2fl/fl BM/Tc in cluster 7. Gene expression analysis of genes within the “memory precursor” signature.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts