Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanosensitive membrane domains regulate calcium entry in arterial endothelial cells to protect against inflammation
Soon-Gook Hong, … , Marcus Gallagher-Jones, Julia J. Mack
Soon-Gook Hong, … , Marcus Gallagher-Jones, Julia J. Mack
Published May 21, 2024
Citation Information: J Clin Invest. 2024;134(13):e175057. https://doi.org/10.1172/JCI175057.
View: Text | PDF
Research Article Cell biology Vascular biology Article has an altmetric score of 10

Mechanosensitive membrane domains regulate calcium entry in arterial endothelial cells to protect against inflammation

  • Text
  • PDF
Abstract

Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, and this supports an antiinflammatory phenotype. High laminar shear stress also induces flow-aligned cell elongation and front-rear polarity, but whether these are required for the antiinflammatory phenotype is unclear. Here, we showed that caveolin-1–rich microdomains polarize to the downstream end of ECs that are exposed to continuous high laminar flow. These microdomains were characterized by high membrane rigidity, filamentous actin (F-actin), and raft-associated lipids. Transient receptor potential vanilloid (TRPV4) ion channels were ubiquitously expressed on the plasma membrane but mediated localized Ca2+ entry only at these microdomains where they physically interacted with clustered caveolin-1. These focal Ca2+ bursts activated endothelial nitric oxide synthase within the confines of these domains. Importantly, we found that signaling at these domains required both cell body elongation and sustained flow. Finally, TRPV4 signaling at these domains was necessary and sufficient to suppress inflammatory gene expression and exogenous activation of TRPV4 channels ameliorated the inflammatory response to stimuli both in vitro and in vivo. Our work revealed a polarized mechanosensitive signaling hub in arterial ECs that dampened inflammatory gene expression and promoted cell resilience.

Authors

Soon-Gook Hong, Julianne W. Ashby, John P. Kennelly, Meigan Wu, Michelle Steel, Eesha Chattopadhyay, Rob Foreman, Peter Tontonoz, Elizabeth J. Tarling, Patric Turowski, Marcus Gallagher-Jones, Julia J. Mack

×

Figure 2

eNOS phosphorylation and Ca2+ oscillations occur at the downstream end in the presence of high laminar flow.

Options: View larger image (or click on image) Download as PowerPoint
eNOS phosphorylation and Ca2+ oscillations occur at the downstream end i...
(A–C) Confluent monolayers of HAECs were exposed to laminar shear stress (20 dynes/cm2) for 48 hours. (A) Representative image of flow-aligned HAECs stained for caveolin-1 and eNOS phosphorylated on serine 1177 (p-eNOS). Individual channel images, displayed in rainbow lookup table, highlight the accumulation of signal for both caveolin-1 and p-eNOS at the downstream end (arrowheads). Scale bars: 20 μm. (B) Imaging of Ca2+ activity in live HAECs expressing GCaMP. Fluorescence intensity over time is plotted for 15 minutes for 1 full-length cell using 3 defined regions of interest. Note that Ca2+ oscillations are observed exclusively at the downstream end; blue arrow indicates one Ca2+ peak. Corresponding time sequence is displayed for indicated time points. (C) All cells within an imaging field of view were outlined and assigned ID numbers. GCaMP signal was extracted over 30 minutes for n = 6 independent experiments and analyzed for Ca2+ activity. Approximately 50% of cells had Ca2+ activity (index of dispersion [IoD] greater than 2). From 730 cells (n = 3 independent experiments), active cells were further segmented into 3 equal-length segments for the upstream, mid-body, and downstream regions. Of the active cells, over 70% had Ca2+ activity restricted to the downstream end.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 12 X users
Referenced by 1 Bluesky users
18 readers on Mendeley
See more details