Reproduction is safeguarded by multiple, often cooperative, regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats, and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular coexpression of Kiss1r with the astrocyte markers GFAP and S100-β occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells in the G-KiR-KO mouse altered gene expression of key factors in PGE2 synthesis in astrocytes and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiR-KO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity, and LH-secretory profiles. Our data unveil a nonneuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.
Encarnacion Torres, Giuliana Pellegrino, Melissa Granados-Rodríguez, Antonio C. Fuentes-Fayos, Inmaculada Velasco, Adrian Coutteau-Robles, Amandine Legrand, Marya Shanabrough, Cecilia Perdices-Lopez, Silvia Leon, Shel H. Yeo, Stephen M. Manchishi, Maria J. Sánchez-Tapia, Victor M. Navarro, Rafael Pineda, Juan Roa, Frederick Naftolin, Jesús Argente, Raúl M. Luque, Julie A. Chowen, Tamas L. Horvath, Vincent Prevot, Ariane Sharif, William H. Colledge, Manuel Tena-Sempere, Antonio Romero-Ruiz
Usage data is cumulative from June 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 4,076 | 393 |
952 | 151 | |
Figure | 908 | 6 |
Supplemental data | 532 | 34 |
Citation downloads | 191 | 0 |
Totals | 6,659 | 584 |
Total Views | 7,243 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.