Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Mouse sarcopenia model reveals sex- and age-specific differences in phenotypic and molecular characteristics
Haiming L. Kerr, … , Michael J. MacCoss, Jose M. Garcia
Haiming L. Kerr, … , Michael J. MacCoss, Jose M. Garcia
Published August 15, 2024
Citation Information: J Clin Invest. 2024;134(16):e172890. https://doi.org/10.1172/JCI172890.
View: Text | PDF
Research Article Aging Muscle biology Article has an altmetric score of 14

Mouse sarcopenia model reveals sex- and age-specific differences in phenotypic and molecular characteristics

  • Text
  • PDF
Abstract

Our study was to characterize sarcopenia in C57BL/6J mice using a clinically relevant definition to investigate the underlying molecular mechanisms. Aged male (23–32 months old) and female (27–28 months old) C57BL/6J mice were classified as non-, probable-, or sarcopenic based on assessments of grip strength, muscle mass, and treadmill running time, using 2 SDs below the mean of their young counterparts as cutoff points. A 9%–22% prevalence of sarcopenia was identified in 23–26 month-old male mice, with more severe age-related declines in muscle function than mass. Females aged 27–28 months showed fewer sarcopenic but more probable cases compared with the males. As sarcopenia progressed, a decrease in muscle contractility and a trend toward lower type IIB fiber size were observed in males. Mitochondrial biogenesis, oxidative capacity, and AMPK-autophagy signaling decreased as sarcopenia progressed in males, with pathways linked to mitochondrial metabolism positively correlated with muscle mass. No age- or sarcopenia-related changes were observed in mitochondrial biogenesis, OXPHOS complexes, AMPK signaling, mitophagy, or atrogenes in females. Our results highlight the different trajectories of age-related declines in muscle mass and function, providing insights into sex-dependent molecular changes associated with sarcopenia progression, which may inform the future development of novel therapeutic interventions.

Authors

Haiming L. Kerr, Kora Krumm, Barbara Anderson, Anthony Christiani, Lena Strait, Theresa Li, Brynn Irwin, Siyi Jiang, Artur Rybachok, Amanda Chen, Elizabeth Dacek, Lucas Caeiro, Gennifer E. Merrihew, James W. MacDonald, Theo K. Bammler, Michael J. MacCoss, Jose M. Garcia

×

Total citations by year

Year: 2025 2024 Total
Citations: 4 2 6
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article (6)

Title and authors Publication Year
Danshensu sodium salt alleviates muscle atrophy via CaMKII‐PGC1α‐FoxO3a signaling pathway in D‐galactose‐induced models
Lim P, Woo SW, Han J, Lee YL, Shim JH, Kim HS
The FASEB Journal 2025
Altered relaxation and Mitochondria-Endoplasmic Reticulum Contacts Precede Major (Mal)adaptations in Aging Skeletal Muscle and are Prevented by Exercise
Allen RJ, Kronemberger A, Shi Q, Pope M, Cuadra-Muñoz E, Son W, Song LS, Anderson EJ, Pereira RO, Lira VA
bioRxiv 2025
From Clinical to Benchside: Lacticaseibacillus and Faecalibacterium Are Positively Associated With Muscle Health and Alleviate Age‐Related Muscle Disorder
Liu C, Wong PY, Barua N, Li B, Wong HY, Zhang N, Chow SK, Wong SH, Yu J, Ip M, Cheung WH, Duque G, Brochhausen C, Sung JJ, Wong RM
Aging Cell 2025
Sirt2 deficiency aggravates intramuscular adipose tissue infiltration and impairs myogenesis with aging in male mice.
Lee EJ, Park S, Jeong KS
Biogerontology 2025
Lipid metabolites and sarcopenia-related traits: a Mendelian randomization study
Liu J, Wang S, Shen Y, Shi H, Han L
Diabetology & Metabolic Syndrome 2024
The Oldest of Old Male C57B/6J Mice Are Protected from Sarcopenic Obesity: The Possible Role of Skeletal Muscle Protein Kinase B Expression
Reynolds TH IV, Mills N, Hoyte D, Ehnstrom K, Arata A
International Journal of Molecular Sciences 2024

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 24 X users
23 readers on Mendeley
See more details