Lifetime and temporal co-occurrence of substance use disorders (SUDs) is common and compared with individual SUDs is characterized by greater severity, additional psychiatric comorbidities, and worse outcomes. Here, we review evidence for the role of generalized genetic liability to various SUDs. Coaggregation of SUDs has familial contributions, with twin studies suggesting a strong contribution of additive genetic influences undergirding use disorders for a variety of substances (including alcohol, nicotine, cannabis, and others). GWAS have documented similarly large genetic correlations between alcohol, cannabis, and opioid use disorders. Extending these findings, recent studies have identified multiple genomic loci that contribute to common risk for these SUDs and problematic tobacco use, implicating dopaminergic regulatory and neuronal development mechanisms in the pathophysiology of generalized SUD genetic liability, with certain signals demonstrating cross-species and translational validity. Overlap with genetic signals for other externalizing behaviors, while substantial, does not explain the entirety of the generalized genetic signal for SUD. Polygenic scores (PGS) derived from the generalized genetic liability to SUDs outperform PGS for individual SUDs in prediction of serious mental health and medical comorbidities. Going forward, it will be important to further elucidate the etiology of generalized SUD genetic liability by incorporating additional SUDs, evaluating clinical presentation across the lifespan, and increasing the granularity of investigation (e.g., specific transdiagnostic criteria) to ultimately improve the nosology, prevention, and treatment of SUDs.
Alex P. Miller, Ryan Bogdan, Arpana Agrawal, Alexander S. Hatoum
Usage data is cumulative from June 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 3,445 | 290 |
740 | 92 | |
Figure | 728 | 1 |
Citation downloads | 150 | 0 |
Totals | 5,063 | 383 |
Total Views | 5,446 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.