Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide
Nathan R. Martinez, … , David C. Jackson, Leonard C. Harrison
Nathan R. Martinez, … , David C. Jackson, Leonard C. Harrison
Published May 1, 2003
Citation Information: J Clin Invest. 2003;111(9):1365-1371. https://doi.org/10.1172/JCI17166.
View: Text | PDF
Article Metabolism

Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide

  • Text
  • PDF
Abstract

Insulin is a major target of the autoimmune response associated with destruction of pancreatic β cells in type 1 diabetes. A peptide that spans the junction of the insulin B chain and the connecting (C) peptide in proinsulin has been reported to stimulate T cells from humans at risk for type 1 diabetes and autoimmune diabetes–prone NOD mice. Here we show that proinsulin B24–C36 peptide binds to I-Ag7, the MHC class II molecule of the NOD mouse, and, after intranasal administration, induces regulatory CD4+ T cells that, in the absence of CD8+ T cells, block the adoptive transfer of diabetes. Curiously, however, intranasal B24–C36 did not inhibit development of spontaneous diabetes in treated mice. We then determined that B24–C36, and its core sequence B25–C34, bind to Kd, the NOD mouse MHC class I molecule, and elicit CD8+ CTLs. When the CD8+ T lymphocyte epitope was truncated at the C34 valine anchor residue for binding to Kd, the residual CD4+ T cell epitope, B24–C32/33, significantly inhibited diabetes development after a single intranasal dose. This study identifies a novel CTL epitope in proinsulin and demonstrates that the therapeutic potential of a “tolerogenic” autoantigen peptide can be compromised by the presence of an integral CTL epitope.

Authors

Nathan R. Martinez, Petra Augstein, Antonis K. Moustakas, George K. Papadopoulos, Silvia Gregori, Luciano Adorini, David C. Jackson, Leonard C. Harrison

×

Full Text PDF

Download PDF (1.10 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts