In the work presented here, we explored the influence of leptin on the kinetics of experimental autoimmune encephalomyelitis (EAE) onset, in the EAE-associated inflammatory anorexia, and in the development of pathogenic T cell responses. We found that the expression of serum leptin increased before the clinical onset of EAE in disease-susceptible C57BL/6J (H-2b) and SJL/J (H-2s) strains of mice, which are models of chronic-progressive and relapsing-remitting EAE, respectively. This increase in serum leptin correlated with disease susceptibility, reduction in food intake, and decrease in body weight. Indeed, acute starvation, which is able to prevent the increase in serum leptin, delayed disease onset and attenuated clinical symptoms by inducing a T helper 2 cytokine switch. Furthermore, immunohistochemical analysis revealed a parallel in situ production of leptin in inflammatory infiltrates and in neurons only during the acute/active phase of both chronic-progressive and relapsing-remitting EAE. We also found that leptin secretion by activated T cells sustained their proliferation in an autocrine loop, since antileptin receptor antibodies were able to inhibit the proliferative response of autoreactive T cells in vitro. Given that leptin appears to regulate EAE susceptibility, inflammatory anorexia, and pathogenic T-cell immune function, we postulate that it may offer a potential target in the treatment of multiple sclerosis.
Veronica Sanna, Antonio Di Giacomo, Antonio La Cava, Robert I. Lechler, Silvia Fontana, Serafino Zappacosta, Giuseppe Matarese
Leptin levels and neurological impairment during EAE induction with MOG35–55 and PLP139–151 encephalitogenic peptides or after adoptive transfer of MOG35–55-specific CD4+ T cells