Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Breast cancer immunopeptidomes contain numerous shared tumor antigens
Eralda Kina, … , Pierre Thibault, Claude Perreault
Eralda Kina, … , Pierre Thibault, Claude Perreault
Published October 31, 2023
Citation Information: J Clin Invest. 2024;134(1):e166740. https://doi.org/10.1172/JCI166740.
View: Text | PDF
Research Article Immunology Oncology Article has an altmetric score of 5

Breast cancer immunopeptidomes contain numerous shared tumor antigens

  • Text
  • PDF
Abstract

Hormone receptor–positive breast cancer (HR+) is immunologically cold and has not benefited from advances in immunotherapy. In contrast, subsets of triple-negative breast cancer (TNBC) display high leukocytic infiltration and respond to checkpoint blockade. CD8+ T cells, the main effectors of anticancer responses, recognize MHC I–associated peptides (MAPs). Our work aimed to characterize the repertoire of MAPs presented by HR+ and TNBC tumors. Using mass spectrometry, we identified 57,094 unique MAPs in 26 primary breast cancer samples. MAP source genes highly overlapped between both subtypes. We identified 25 tumor-specific antigens (TSAs) mainly deriving from aberrantly expressed regions. TSAs were most frequently identified in TNBC samples and were more shared among The Cancer Genome Atlas (TCGA) database TNBC than HR+ samples. In the TNBC cohort, the predicted number of TSAs positively correlated with leukocytic infiltration and overall survival, supporting their immunogenicity in vivo. We detected 49 tumor-associated antigens (TAAs), some of which derived from cancer-associated fibroblasts. Functional expansion of specific T cell assays confirmed the in vitro immunogenicity of several TSAs and TAAs. Our study identified attractive targets for cancer immunotherapy in both breast cancer subtypes. The higher prevalence of TSAs in TNBC tumors provides a rationale for their responsiveness to checkpoint blockade.

Authors

Eralda Kina, Jean-Philippe Laverdure, Chantal Durette, Joël Lanoix, Mathieu Courcelles, Qingchuan Zhao, Anca Apavaloaei, Jean-David Larouche, Marie-Pierre Hardy, Krystel Vincent, Patrick Gendron, Leslie Hesnard, Catherine Thériault, Maria Virginia Ruiz Cuevas, Grégory Ehx, Pierre Thibault, Claude Perreault

×

Figure 4

Identification of TAAs.

Options: View larger image (or click on image) Download as PowerPoint
Identification of TAAs.
(A) Expression heatmap of TAAs’ coding sequence ...
(A) Expression heatmap of TAAs’ coding sequence in normal tissues (GTEx, mTECs, and bone marrow). Number of samples per tissue are shown in parentheses. Color intensity corresponds to average expression per tissue (mean log-transformed rphm). Bold boxes indicate that more than 10% of samples have an expression above 8.55 rphm. CM, cell migration; TF, transcription factor. (B) Percentage of HR+ (n = 583) and TNBC (n = 158) tumors from TCGA-BRCA cohort with individual TAA expression greater than 2 rphm. (C) GSEA in HR+ breast cancer tumors from the TCGA cohort with high levels (>median) of predicted TAAs.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 6 X users
30 readers on Mendeley
See more details