Melanomas reprogram their metabolism to rapidly adapt to therapy-induced stress conditions, allowing them to persist and ultimately develop resistance. We report that a subpopulation of melanoma cells tolerate MAPK pathway inhibitors (MAPKis) through a concerted metabolic reprogramming mediated by peroxisomes and UDP-glucose ceramide glycosyltransferase (UGCG). Compromising peroxisome biogenesis, by repressing PEX3 expression, potentiated the proapoptotic effects of MAPKis via an induction of ceramides, an effect limited by UGCG-mediated ceramide metabolism. Cotargeting PEX3 and UGCG selectively eliminated a subset of metabolically active, drug-tolerant CD36+ melanoma persister cells, thereby sensitizing melanoma to MAPKis and delaying resistance. Increased levels of peroxisomal genes and UGCG were found in patient-derived MAPKi-relapsed melanomas, and simultaneously inhibiting PEX3 and UGCG restored MAPKi sensitivity in multiple models of therapy resistance. Finally, combination therapy consisting of a newly identified inhibitor of the PEX3-PEX19 interaction, a UGCG inhibitor, and MAPKis demonstrated potent antitumor activity in preclinical melanoma models, thus representing a promising approach for melanoma treatment.
Fan Huang, Feiyang Cai, Michael S. Dahabieh, Kshemaka Gunawardena, Ali Talebi, Jonas Dehairs, Farah El-Turk, Jae Yeon Park, Mengqi Li, Christophe Goncalves, Natascha Gagnon, Jie Su, Judith H. LaPierre, Perrine Gaub, Jean-Sébastien Joyal, John J. Mitchell, Johannes V. Swinnen, Wilson H. Miller Jr., Sonia V. del Rincón
Increased peroxisomal and UGCG activity commonly occurs in melanomas that rapidly acquire resistance to MAPK-targeted therapy.