Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The antitumor effects of IFN-α are abrogated in a STAT1-deficient mouse
Gregory B. Lesinski, … , Joan Durbin, William E. Carson III
Gregory B. Lesinski, … , Joan Durbin, William E. Carson III
Published July 15, 2003
Citation Information: J Clin Invest. 2003;112(2):170-180. https://doi.org/10.1172/JCI16603.
View: Text | PDF
Article Oncology Article has an altmetric score of 3

The antitumor effects of IFN-α are abrogated in a STAT1-deficient mouse

  • Text
  • PDF
Abstract

IFN-α activates the signal transducer and activator of transcription (STAT) family of proteins; however, it is unknown whether IFN-α exerts its antitumor actions primarily through a direct effect on malignant cells or by stimulating the immune system. To investigate the contribution of STAT1 signaling within the tumor, we generated a STAT1-deficient melanoma cell line, AGS-1. We reconstituted STAT1 into AGS-1 cells by retroviral gene transfer. The resulting cell line (AGS-1STAT1) showed normal regulation of IFN-α–stimulated genes (e.g., H2k, ISG-54) as compared with AGS-1 cells infected with the empty vector (AGS-1MSCV). However, mice challenged with the AGS-1, AGS-1STAT1, and AGS-1MSCV cell lines exhibited nearly identical survival in response to IFN-α treatment, indicating that restored STAT1 signaling within the tumor did not augment the antitumor activity of IFN-α. In contrast, STAT1–/– mice could not utilize exogenous IFN-α to inhibit the growth of STAT1+/+ melanoma cells in either an intraperitoneal tumor model or in the adjuvant setting. The survival of tumor-bearing STAT1–/– mice was identical regardless of treatment (IFN-α or PBS). Additional cell depletion studies demonstrated that NK cells mediated the antitumor effects of IFN-α. Thus, STAT1-mediated gene regulation within immune effectors was necessary for mediating the antitumor effects of IFN-α in this experimental system.

Authors

Gregory B. Lesinski, Mirela Anghelina, Jason Zimmerer, Timothy Bakalakos, Brian Badgwell, Robin Parihar, Yan Hu, Brian Becknell, Gerard Abood, Abhik Ray Chaudhury, Cynthia Magro, Joan Durbin, William E. Carson III

×

Full Text PDF

Download PDF (2.35 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
55 readers on Mendeley
See more details