Bone marrow harbors cells that have the capacity to differentiate into cells of nonhematopoietic tissues of neuronal, endothelial, epithelial, and muscular phenotype. Here we demonstrate that bone marrow–derived cells populate pancreatic islets of Langerhans. Bone marrow cells from male mice that express, using a CRE-LoxP system, an enhanced green fluorescent protein (EGFP) if the insulin gene is actively transcribed were transplanted into lethally irradiated recipient female mice. Four to six weeks after transplantation, recipient mice revealed Y chromosome and EGFP double-positive cells in their pancreatic islets. Neither bone marrow cells nor circulating peripheral blood nucleated cells of donor or recipient mice had any detectable EGFP. EGFP-positive cells purified from islets express insulin, glucose transporter 2 (GLUT2), and transcription factors typically found in pancreatic β cells. Furthermore, in vitro these bone marrow–derived cells exhibit — as do pancreatic β cells — glucose-dependent and incretin-enhanced insulin secretion. These results indicate that bone marrow harbors cells that have the capacity to differentiate into functionally competent pancreatic endocrine β cells and that represent a source for cell-based treatment of diabetes mellitus. The results generated with the CRE-LoxP system also suggest that in vivo cell fusion is an unlikely explanation for the “transdifferentiation” of bone marrow–derived cells into differentiated cell phenotypes.
Andreea Ianus, George G. Holz, Neil D. Theise, Mehboob A. Hussain
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 767 | 61 |
136 | 29 | |
Figure | 338 | 14 |
Citation downloads | 74 | 0 |
Totals | 1,315 | 104 |
Total Views | 1,419 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.