Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A cell-penetrating PHLPP peptide improves cardiac arrest survival in murine and swine models
Jing Li, … , Henry R. Halperin, Terry L. Vanden Hoek
Jing Li, … , Henry R. Halperin, Terry L. Vanden Hoek
Published May 1, 2023
Citation Information: J Clin Invest. 2023;133(9):e164283. https://doi.org/10.1172/JCI164283.
View: Text | PDF
Research Article Article has an altmetric score of 2

A cell-penetrating PHLPP peptide improves cardiac arrest survival in murine and swine models

  • Text
  • PDF
Abstract

Out-of-hospital cardiac arrest is a leading cause of death in the US, with a mortality rate over 90%. Preclinical studies demonstrate that cooling during cardiopulmonary resuscitation (CPR) is highly beneficial, but can be challenging to implement clinically. No medications exist for improving long-term cardiac arrest survival. We have developed a 20–amino acid peptide, TAT-PHLPP9c, that mimics cooling protection by enhancing AKT activation via PH domain leucine-rich repeat phosphatase 1 (PHLPP1) inhibition. Complementary studies were conducted in mouse and swine. C57BL/6 mice were randomized into blinded saline control and peptide-treatment groups. Following a 12-minute asystolic arrest, TAT-PHLPP9c was administered intravenously during CPR and significantly improved the return of spontaneous circulation, mean arterial blood pressure and cerebral blood flow, cardiac and neurological function, and survival (4 hour and 5 day). It inhibited PHLPP-NHERF1 binding, enhanced AKT but not PKC phosphorylation, decreased pyruvate dehydrogenase phosphorylation and sorbitol production, and increased ATP generation in heart and brain. TAT-PHLPP9c treatment also reduced plasma taurine and glutamate concentrations after resuscitation. The protective benefit of TAT-PHLPP9c was validated in a swine cardiac arrest model of ventricular fibrillation. In conclusion, TAT-PHLPP9c may improve neurologically intact cardiac arrest survival without the need for physical cooling.

Authors

Jing Li, Xiangdong Zhu, Matt T. Oberdier, Chunpei Lee, Shaoxia Lin, Sarah J. Fink, Cody N. Justice, Kevin Qin, Andrew W. Begeman, Frederick C. Damen, Hajwa Kim, Jiwang Chen, Kejia Cai, Henry R. Halperin, Terry L. Vanden Hoek

×

Total citations by year

Year: 2024 2023 Total
Citations: 5 2 7
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article (7)

Title and authors Publication Year
Survival and Neurologic Outcomes From Pharmacologic Peptide Administration During Cardiopulmonary Resuscitation of Pulseless Electrical Activity
Oberdier MT, Li J, Ambinder DI, Suzuki M, Tumarkin E, Fink S, Neri L, Zhu X, Justice CN, Vanden Hoek TL, Halperin HR
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease 2024
Noncanonical microprotein regulation of immunity
Nichols C, Do-Thi VA, Peltier DC
Molecular Therapy 2024
Phlpp1 alters the murine chondrocyte phospho-proteome during endochondral bone formation
Weaver SR, Peralta-Herrera E, Torres HM, Jessen E, Bradley EW, Westendorf JJ
Bone 2024
Thrombo-inflammation and the role of platelets
Mack A, Vanden Hoek T, Du X
Arteriosclerosis, thrombosis, and vascular biology 2024
The fuzzy MAD stroke conjecture, using Fuzzy C Means to classify multimodal apparent diffusion for ischemic stroke lesion stratification
Damen FC, Su C, Tsuruda J, Anderson T, Valyi-Nagy T, Li W, Shaghaghi M, Jiang R, Xie C, Cai K
Magnetic resonance imaging 2024
CPR: Cardiac phosphatase in resuscitation
Deb Arjun
Journal of Clinical Investigation 2023
Blockage of PHLPP1 protects against myocardial ischemia/reperfusion injury in diabetic mice via activation of STAT3 signaling.
Gao S, Qiu Y, Meng Y, Jia Y, Lang X, Zhao H, Sun H, Zhang J, Ding L
Journal of Bioenergetics and Biomembranes 2023

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 2 X users
11 readers on Mendeley
See more details