Understanding the cellular mechanisms underlying chronic kidney disease (CKD) progression is required to develop effective therapeutic approaches. In this issue of the JCI, Taguchi, Elias, et al. explore the relationship between cyclin G1 (CG1), an atypical cyclin that induces G2/M proximal tubule cell cycle arrest, and epithelial dedifferentiation during fibrogenesis. While CG1-knockout mice were protected from fibrosis and had reduced G2/M arrest, protection was unexpectedly independent of induction of G2/M arrest. Rather, CG1 drove fibrosis by regulating maladaptive dedifferentiation in a CDK5-dependent mechanism. These findings highlight the importance of maladaptive epithelial dedifferentiation in kidney fibrogenesis and identify CG1/CDK5 signaling as a therapeutic target in CKD progression.
Benjamin D. Humphreys
Title and authors | Publication | Year |
---|---|---|
Phosphorylation of PBK at Thr9 by CDK5 correlates with invasion of prolactinomas.
Fang Q, Liu C, Nie D, Guo J, Xie W, Zhang Y |
CNS Neuroscience & Therapeutics | 2024 |
5-Hydroxytryptamine 1F Receptor Agonist Lasmiditan Differentially Regulates Successful Repair and Failed Repair Genes in a Mouse Model of Acute Kidney Injury
Santiago Raj PV, Scholpa NE, Hurtado KA, Janda J, Hortareas J, Schnellmann RG |
ACS Pharmacology & Translational Science | 2024 |
Transcriptomic analysis of Paraoxonase 1 expression in hepatocellular carcinoma and its potential impact on tumor immunity.
Dong L, Dong C, Yu Y, Jiao X, Zhang X, Zhang X, Li Z |
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico | 2024 |